THE GHOST MCMC ALGORITHM: rare event sampling and applications to power systems reliability

Alessandro Zocca

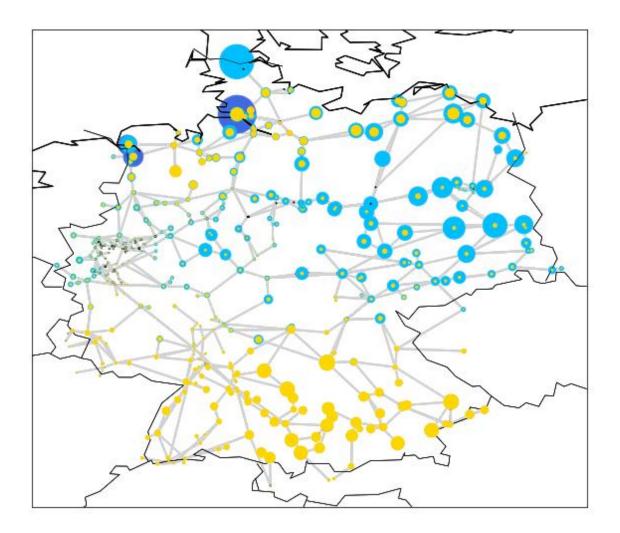
California Institute of Technology

power grids are evolving rapidly

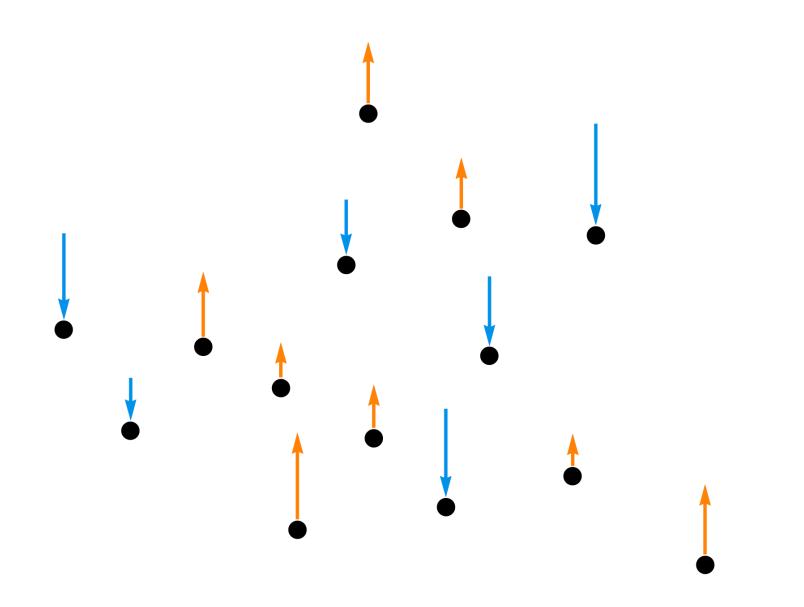
increasing penetration of renewables

progressive transport electrification

can extreme fluctuations in load and generation cause failures?



German transmission network model with n = 585 nodes and m = 852 edges renewables: blue = offshore wind, light blue = onshore wind, yellow = solar



Weighted graph with sources and sinks \rightarrow power injections p

power grids as stochastic network

power injections are modeled as random variables

$$\mathbb{E} \mathbf{p} = \mu$$
 and $\mathrm{Cov}(\mathbf{p}) = \mathbf{\Sigma}_p$

heterogeneous variances for the power injections fluctuations as well as correlations between them

ightarrow non-trivial covariance matrix Σ_p

quantities of interest

- line power flows $\mathbf{f} = V \mathbf{p}$
- nodal frequencies

$$M_{j}\dot{\omega_{j}} = -D_{j}\omega_{j} + (\mathbf{p}_{j} - \mu_{j}) - \sum_{i:(i,j)\in E} \mathbf{f}_{i,j}$$
$$\dot{\mathbf{f}}_{i,j} = B_{i,j}(\omega_{i} - \omega_{j})$$

investigating power grids reliability

failure event = line power flow overloads

$$C^{\text{line}} = \bigcap_{\ell \in E} \left\{ |\mathbf{f}_{\ell}| \ge 1 \right\}$$

failure event = nodal frequencies or rocof violations

$$C^{\text{freq}} = \bigcap_{j \in \mathcal{G}} \left\{ \max_{t \in [0,T]} |\omega_j(t)| \ge \theta_{\max} \right\}$$
$$C^{\text{rocof}} = \bigcap_{j \in \mathcal{G}} \left\{ \max_{t \in [0,T]} |\dot{\omega}_j(t)| \ge r_{\max} \right\}$$

how does the system looks like upon failure? how do failures most likely happen?

large deviations framework (NZZ18)

introduce the parameter $\varepsilon > 0$ to describe the magnitude of the system's noise

$$\operatorname{Cov}(\mathbf{p}) = \varepsilon \mathbf{\Sigma}_p$$

small-noise limit $\varepsilon \to 0^+$

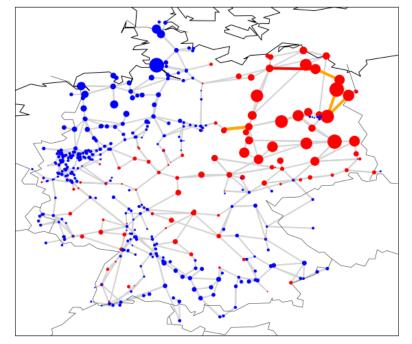
$$\lim_{\varepsilon \downarrow 0} \varepsilon \log \mathbb{P}_{\mu}(|\mathbf{f}_{\ell}| \ge 1) = -I_{\ell}(\mu)$$
$$\lim_{\varepsilon \downarrow 0} \varepsilon \mathbb{P}_{\mu}(C^{\text{line}}) = \lim_{\varepsilon \downarrow 0} \varepsilon \mathbb{P}_{\mu}(\max_{\ell} |\mathbf{f}_{\ell}| \ge 1) = -\min_{\ell} I_{\ell}(\mu)$$

in the Gaussian case

$$I_{\ell}(\mu) = \inf_{p \in \mathbb{R}^n : |e_{\ell}^T V p| \ge 1} \frac{1}{2} (p - \mu)^T \Sigma_p^{-1} (p - \mu) = \frac{(1 - |\nu_{\ell}|)^2}{2\sigma_{\ell}^2}$$

conditioning on failure event

$$\mathbf{p}^{(\ell)} = \operatorname*{arginf}_{p \in \mathbb{R}^n : |\mathbf{e}_{\ell}^T V p| \ge 1} \frac{1}{2} (p - \mu)^T \mathbf{\Sigma}_p^{-1} (p - \mu) = \mathbb{E}[\mathbf{p} | \mathbf{f}_{\ell} = 1] = \mu + \frac{(1 - \nu_{\ell})}{\sigma_{\ell}^2} \mathbf{\Sigma}_p V^T \mathbf{e}_{\ell}$$

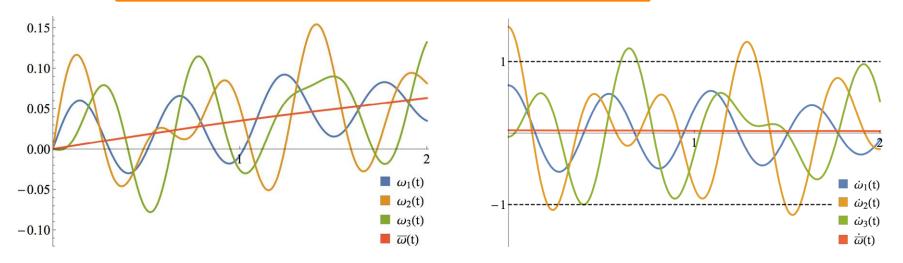


however, this close-form expression for power injections realization upon failure strongly depends on linearized dynamics and Gaussian assumption

how to deal with...?

- non-Gaussian & mixed distribution?
- non-linear dynamics?

$$M_{j}\dot{\omega_{j}} = -D_{j}\omega_{j} + (\mathbf{p}_{j} - \mu_{j}) - \sum_{i:(i,j)\in E} \mathbf{f}_{i,j}$$
$$\dot{\mathbf{f}}_{i,j} = B_{i,j}(\omega_{i} - \omega_{j})$$



 \rightarrow MCMC method to sample conditionally on failure event

goal

devise a method to efficiently sample from the conditional distribution $\pi = \frac{\rho \mathbf{1}_C}{\rho(C)}$ where C is a rare event, i.e., $\rho(C) \ll 1$ 2 0 - 2

0

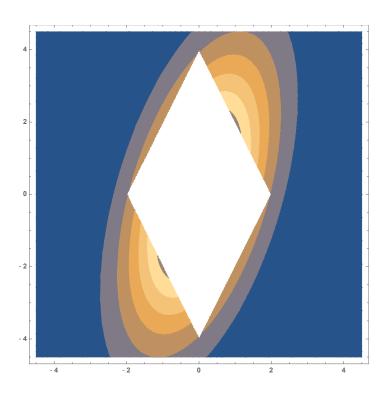
2

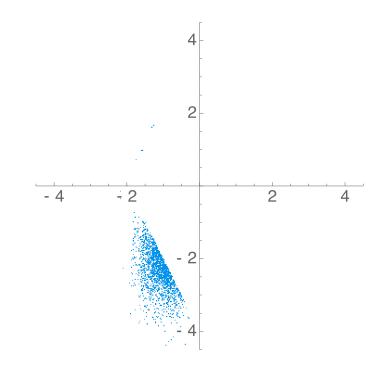
4

- 2

- 4

how to sample?





Some naïve ideas...

- Sampling from ho and rejecting when in C^c
- Sampling from π using MCMC

ghost algorithm

Algorithm 1: Ghost Random Walk Metropolis algorithm (*n*-th step)

Input : The *n*-th sample $X_n \in C \subset \mathbb{R}^d$

1 Generate a SRWM proposal Y_{n+1} distributed according to the density $q(y - X_n)dy$;

2 Calculate direction
$$\varphi_n = Y_{n+1} - X_n$$
;

3 Calculate all the intersection points (which are at most two) $T := \{t > 0 : X_n + t\varphi \in \delta C\};$

4 if $T = \{t_1, t_2\}$ and $\min\{t_1, t_2\} < 1$ then

5
$$Z_{n+1} = Y_{n+1} + (t_2 - t_1)\varphi;$$

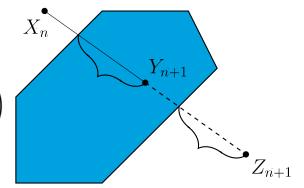
6 else

$$7 \mid Z_{n+1} = Y_{n+1};$$

8 end

9 Evaluate the acceptance probability:

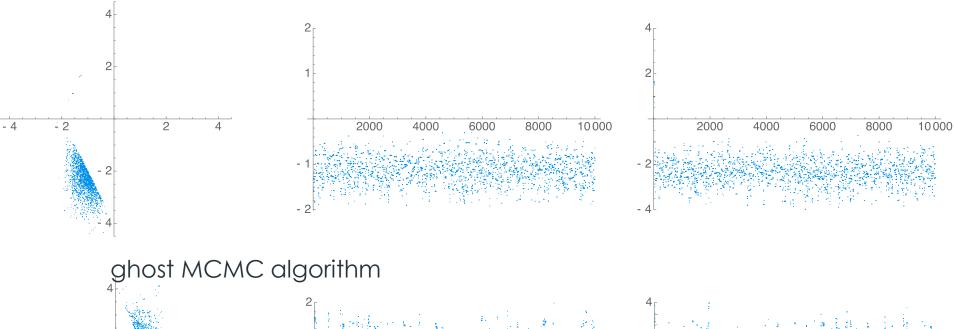
$$\alpha(X_n, Z_{n+1}) = \min\left(1, \frac{\pi(Z_{n+1})\mathbf{1}_C(Z_{n+1})}{\pi(X_n)\mathbf{1}_C(X_n)}\right)$$



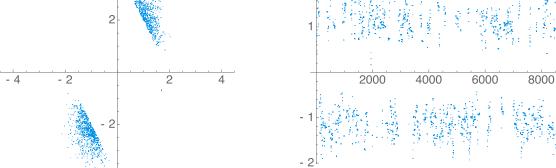
interpreted as one if $\pi(X_n)\mathbf{1}_C(X_n) = 0$: 10 Generate a uniform random variable U on [0, 1]; 11 if $U \leq \alpha(X_n, Z_{n+1})$ then 12 $| X_{n+1} = Z_{n+1}$; 13 else 14 $| X_{n+1} = X_n$; 15 end 16 return X_{n+1}

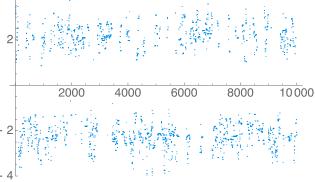
ghost algorithm in action

classical MCMC algorithm



10000





a technical condition (ray-boundedness)

define
$$l_x^{\varphi}(r) := \int_0^r \mathbf{1}_C(x + t\varphi) dt$$
 and $G_x^C : C \to \mathbb{R}^d$ as
 $G_x^C(x + r\varphi) := x + l_x^{\varphi}(r)\varphi$

C closed set and $x \in C$ then $G_x^C: C \to \mathbb{R}^d$ injective

 C^c ray-bounded if $G^C_x:C\to \mathbb{R}^d$ is surjective for all $x\in C$

 C^{c} <u>convex polytope</u>: ray boundedness simply means that any ray starting in C and intersecting C^{c} will also exit from it

theorem (ghost sampling) (MVZ18)

Assume C is closed and C^c ray-bounded subset.

The ghost sampling RW is a MH algorithm with proposal density symmetric on C given by $q_{\text{GS}}(x, x + r\varphi) := q(l_x^{\varphi}(r)\varphi) \left(\frac{l_x^{\varphi}(r)}{r}\right)^{d-1} \mathbf{1}_C(x + r\varphi).$

Moreover, the GS algorithm is π - irreducible and the SLLN holds, that is, for every π - integrable function f

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} f(X_i) = \pi(f)$$

back to frequency violations

assume the system is affected by a step disturbance

$$u(t) = u \mathbf{1}_{\{t \ge 0\}}$$

where $u = p - \mu$ is a d-dimensional r.v. with distribution ρ

the system evolution is described by

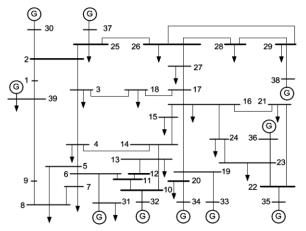
$$\dot{x} = Ax$$
 $x = \begin{bmatrix} \dot{\omega} \\ \omega \end{bmatrix}, \quad A = \begin{bmatrix} -M^{-1}D & -M^{-1}L \\ I & \mathbb{O} \end{bmatrix}, \quad x(0) = \begin{bmatrix} M^{-1}u \\ 0 \end{bmatrix}$

we approximate the event «rocof violation» in the interval $[0,\varepsilon]$ with $\varepsilon=0.5{\rm sec}$ as

$$C^{\text{rocof}}(N) = \bigcap_{j \in \mathcal{G}} \bigcap_{n=0}^{N} \left\{ u \in \mathbb{R}^{d} : \left| \dot{\omega}_{j} \left(\frac{n}{N} \varepsilon \right) \right| \le r_{\max} \right\}$$
$$= \bigcap_{j \in \mathcal{G}} \bigcap_{n=0}^{N} \left\{ u \in \mathbb{R}^{d} : \left| \exp\left(\frac{n}{N} \varepsilon \right)_{j} \begin{bmatrix} M^{-1}u \\ 0 \end{bmatrix} \right| \le r_{\max} \right\}$$

a case study

IEEE 39-bus test network



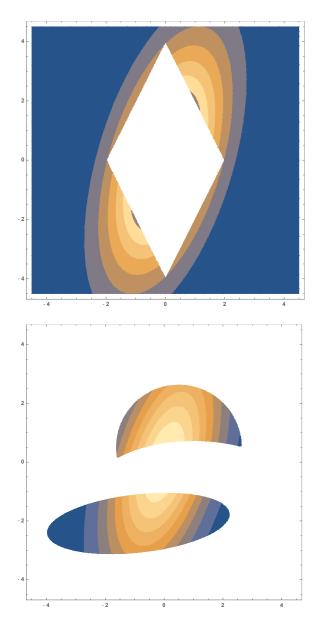
$$\rho(u_1, u_2) \sim \frac{1}{1 + (30(u_1 - u_2/2))^4} \cdot \frac{1}{1 + (30(u_2 - u_1/2))^4}$$

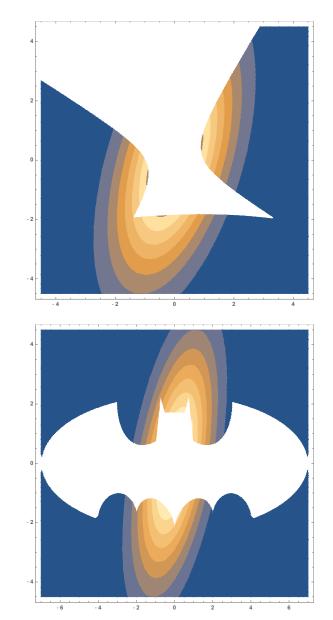
+ the other components i.i.d. zero-mean Gaussian

	G1								
1	28.9	80.3	0.5	0.6	0.9	0.4	1.6	6.5	1.6
5	27.6	81.5	12.4	1.1	2.1	0	1.2	9.8	1.7
20	27.5	79.5	11.5	1.9	3.0	0.1	2.4	15.5	2.0
50	28.5	78.8	12.2	1.1	2.7	0.1	2.4	17.1	2.6
100	28.9 27.6 27.5 28.5 28.6	79.8	12.2	1.7	2.4	0.1	1.9	15.6	2.0
	•								

	N = 1	N = 5	N = 20	N = 50	N = 100
p_d	15.2%	22.4%	24.0%	25.0%	25.0%
$ \overline{d}$	1.21	1.37	1.44	1.46	1.44
\overline{L}	596	701	735	744	736

extension to more general events





some preliminaries

$$\mathcal{K} = \{K_{arphi} \mid arphi \in \mathbb{S}^{d-1}\}$$
 is a halting regime if

• for every
$$\varphi \in \mathbb{S}^{d-1}$$
 K_{φ} is a r.v. on $\mathbb{N} \cup \{\infty\}$

•
$$K_{arphi} \sim K_{-arphi}$$
 for every direction $arphi \in \mathbb{S}^{d-1}$

assume the proposal density can be written as

$$q(y-x) = q_{r|\varphi}(r|\varphi)q_{\varphi}(\varphi)$$

where r = |y - x| and $\varphi = (y - x)/|y - x|$

if the proposal density is $q(x-y) \sim \mathcal{N}(\mathbf{0}, \Sigma)$, then

$$q_{\varphi}(\varphi) = \frac{\Gamma(\frac{d}{2})}{2\pi^{d/2} \cdot \sqrt{\det \Sigma} \cdot (\varphi^T \Sigma^{-1} \varphi)^{d/2}}$$
$$q_{r|\varphi}(r) = \frac{(\varphi^T \Sigma^{-1} \varphi)^{d/2}}{2^{d/2 - 1} \Gamma(\frac{d}{2})} e^{-(\varphi^T \Sigma^{-1} \varphi) \frac{r^2}{2}} r^{d-1}$$

 $q_{r|\varphi}(r)$ is **generalized gamma distribution** with zero location parameter, scale parameter

$$\beta = \left(\frac{2}{\varphi^T \Sigma^{-1} \varphi}\right)^{1/2}$$

and shape parameters

$$lpha=d/2\qquad \gamma=2$$

Algorithm 2: Skipping Random Walk Metropolis algorithm (*n*-th step)

Input : The *n*-th sample $X_n \in \mathbb{R}^d$

1 Set $X := X_n;$

- **2** Generate the initial SRWM proposal Y distributed according to the density q(u X)du;
- **3** Calculate the direction $\phi = (Y X)/|Y X|;$
- 4 Generate a halting index $K \sim K_{\phi}$;
- **5** Set k = 1 and $Z_1 := Y;$
- 6 while $\underline{Z_k \in C^c}$ and k < K do
- 7 Generate a distance increment R distributed according to $q_{r|\varphi}(\cdot|\phi)$;

s Set
$$Z_{k+1} = Z_k + \phi R$$
;

- 9 Increase k by one;
- 10 end
- 11 Set $Z := Z_k;$
- 12 Evaluate the acceptance probability:

$$\alpha(X,Z) = \begin{cases} \min\left(1,\frac{\pi(Z)}{\pi(X)}\right) & \text{if } \pi(X) \neq 0, \\ 1, & \text{otherwise,} \end{cases}$$

 X_{n+1}

 $Z_1 = Y$

 X_n

Generate a uniform random variable U on (0, 1); 13 if $U \le \alpha(X, Z)$ then 14 $\mid X_{n+1} = Z$; 15 else 16 $\mid X_{n+1} = X$; 17 end 18 return X_{n+1}

another technical condition

let T_C be the first entry time of the skipping chain into C, that is $T_C := \min\{k \ge 1 : Z_k \in C\}$.

assume the halting regime $\mathcal{K} = \{K_{\varphi} \mid \varphi \in \mathbb{S}^{d-1}\}$ and the subset C are such that $\forall x \in \mathbb{R}^d \qquad \sup_{\varphi \in \mathbb{S}^{d-1}} \mathbb{E}_x \left[T_C \wedge K_{\varphi}\right] < \infty$

theorem (skipping sampling) (MVZ19?)

Assume the halting regime $\mathcal{K} = \{K_{\varphi} \mid \varphi \in \mathbb{S}^{d-1}\},$

the subset C and the proposal density are as before.

Then the skipping RWM algorithm:

- is a MH algorithm for a proposal density $q_{\rm SK}$ which is symmetric on C;
- is π irreducible and has unique stationary probability measure π ;
- the SLLN holds;
- is provably **faster** than the classical MH algorithm.

future work

- extensive numerics for power grids
 - large-scale transmission network
 realistic distributions for disturbances
- finish writing the paper about the skipping sampler...
- find new applications for skipping sampling
 - queueing systems?
 - random matrices?
 - random graphs?

Alessandro Zocca

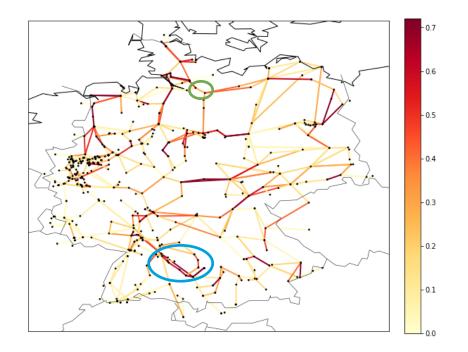
<u>azocca@caltech.edu</u> <u>https://sites.google.com/site/zoccaale/</u>

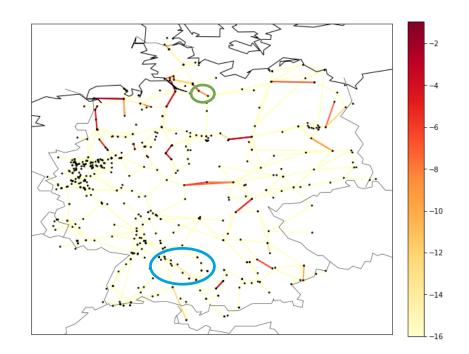
- MV**Z**18 J.Moriarty, J. Vogrinc, A. Zocca «Frequency violations from random disturbances: an MCMC approach», To appear in 2018 IEEE 57th Annual Conference on Decision and Control (CDC), arXiv:1803.08522
- NZZ18 T. Nesti, A. Zocca, B. Zwart «Emergent failures and cascades in power grids: a statistical physics perspective», In *Physical Review Letters* 120, 258301

Alessandro Zocca

<u>azocca@caltech.edu</u> <u>https://sites.google.com/site/zoccaale/</u>

- MV**Z**18 J.Moriarty, J. Vogrinc, A. Zocca «Frequency violations from random disturbances: an MCMC approach», To appear in 2018 IEEE 57th Annual Conference on Decision and Control (CDC), arXiv:1803.08522
- NZZ18 T. Nesti, A. Zocca, B. Zwart «Emergent failures and cascades in power grids: a statistical physics perspective», In *Physical Review Letters* 120, 258301

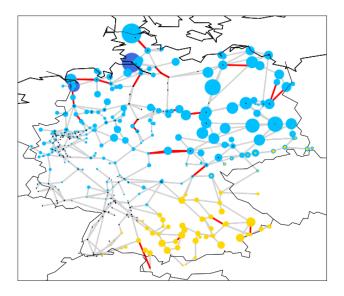


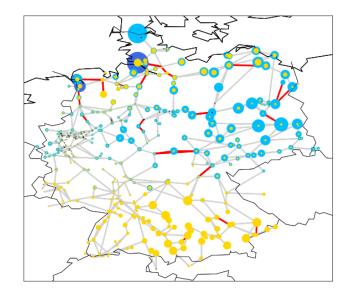


absolute values power flows

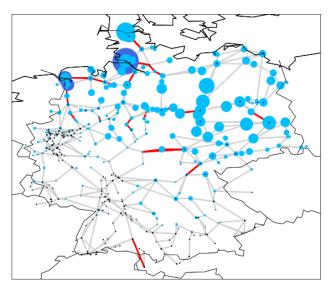
line failure decay rates

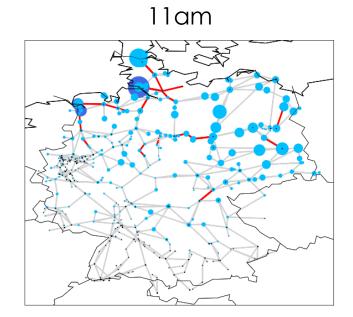
our large deviations framework enables the correct identification of network vulnerabilities!





8am





8pm