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power grids are evolving rapidly

progressive transport electrification

can extreme fluctuations in load and generation cause failures?



German transmission network model with n = 585 nodes and m = 852 edges
renewables: blue = offshore wind, light blue = onshore wind, = solar



Weighted graph with sources and sinks — power injections p



power grids as stochastic network
power injections are modeled as random variables
]Ep = I and Cov(p) — Zp

heterogeneous variances for the power injections
fluctuations as well as correlations between them

— non-trivial covariance matrix Ep

quantities of interest
line power flows f = Vp

nodal frequencies
Mjw; = —Djw; + (pj — 1) = Y i

f;; = Bij(wi —wj)



investigating power grids reliability

failure event = line power flow overloads

Oline ﬂ {‘fﬁ‘ > 1}

el

failure event = nodal frequencies or rocof violations

et = (1) { max |w;(t)| > Omax ¢
t

T
ieg €(0,T] )
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tc[0,T
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how does the system looks like upon failuree
how do failures most likely happen?



large deviations framework (NZZ18)

infroduce the parameter € > 0 to describe the
magnitude of the system’s noise

Cov(p) =3,

small-noise imit € — 0%
hi{)lélogp (|fe] > 1) = —Lo(1)

limeP, (C") = limeP f/|>1)=—minJ
im £P, L (C7) im £P, (max\d ) min o(1h)

in the Gaussian case
1

pER™:|e} Vp|>1 2 p 20.?



conditioning on failure event

. 1 B 1 — Vy
p¥) = arginf  —(p— /L)TEP "p—p) =E[p|fi=1=p+ ( 2 )Evaeﬁ
peR” : |eTVp|>1 Oy

however, this close-form expression for power injections
realization upon failure strongly depends on linearized
dynamics and Gaussian assumption



how to deal with...?

non-Gaussian & mixed distribution?

non-linear dynamics¢
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— MCMC method to sample conditionally on failure event



goal

devise a method to efficiently sample from the conditional

distribution m = % where C'is a rare event, i.e., p(C) < 1
0




how to sample?

Some naive ideags...

Sampling from p and rejecting when in C°

Sampling from 7 using MCMC



ghost algorithm

Algorithm 1: Ghost Random Walk Metropolis algorithm (n-th step)
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Input :The n-th sample X,, € C C R?

Generate a SRWM proposal Y,,4; distributed according to the density ¢(y — X,,)dy;
Calculate direction ¢,, =Y, 11 — X,;;
Calculate all the intersection points (which are at most two) T := {t > 0 : X, +tp € 6C};
if T = {t;,t,} and min{t;,t,} < 1 then
| Zn = Yo + (o — t)g:
else
| Zny1r = Yoia;
end
Evaluate the acceptance probability:

a(X,, Z,11) = min (1,

interpreted as one if (X, )1(X,,) = 0:

Generate a uniform random variable U on [0, 1];
if U <a(X,,Z,;1) then
| X1 = Zny1;
else
’ Xn—l—l - Xn;
end
return X,

Zn+1



ghost algorithm in action

classical MCMC algorithm
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a technical condition (ray-boundedness)
define 7 (r) ;:/ lo(z +te)dt and GS : C — R? as
0
Gg(x +rp)=x+12(r)p

C closed set and x € C'then G¢ : C — R% injective

C*° ray-bounded if G¢ : C — R%is surjective forall z € C

C“ convex polytope: ray boundedness simply means
that any ray starting in C' and intersecting C° will also
exit from it




(MVZ18)

Assume (' is closed and C° ray-bounded subset.

The ghost sampling RW is a MH algorithm with

proposal density symmetric on C' given by

 (r d—1
des(e.+ 1) = a(t200) (E) 1oo 4 ),

Moreover, the GS algorithm is 7r- ireducible and the

SLLN holds, that is, for every 7- integrable function f

tim 7 F(X0) = 7 (f)

n—oo 1, 4



assume the system is affected by a step disturbance
u(t) = ulg>o

where © = p — p is a d -dimensional r.v. with distribution p

the system evolution is described by

_M-'D —M-lL 0) = M1y
I o | "W o

w
W

A=

T = Ax xr =

we approximate the event «wocof violationn in the interval [0, €]

with e = 0.5sec as

N
Crooof (V) = ﬂ ﬂ {u c R%: | (%5)‘ < rmax}
n M1y
P (N5>j [ 0 ]

7€G n=0

—ﬂﬁ{uERd:
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IEEE 39-bus test network
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p(ut,ug) ~

1 1

1+ (30(u1 — ug/2))* 1+ (30(ug — u1/2))*

+ the other components i.i.d. zero-mean Gaussian

N [ GI G2 G3 Gi G5 G6 G7 G8 GO |

T [ 289 803 05 06 09 04 16 65 16

5 || 276 815 124 11 21 0 12 98 17

20 || 275 795 115 19 30 01 24 155 20

50 || 285 788 122 L1 27 01 24 171 26

100 || 286 798 122 17 24 01 19 156 20
N=1 N=5 N=20 N=50 N=100

Pd 15.2% 22.4% 24.0% 25.0% 25.0%

d 1.21 1.37 1.44 1.46 1.44

L 596 701 735 744 736




extension to more general events




K ={K, | ¢ € S*'}isahalting regime if

forevery p € S* ' K isarv.on NU {oc}
K, ~ K_, forevery direction ¢ € s-1

assume the proposal density can be written as
q(y — 1) = Grip(T|9) g, (0)

where?“:‘y—x‘omd gpz(y—x)/\y—a}\



if the proposal density is g(x — y) ~ N(0,X), then
'(5)

QQO(SO) — P - B r
2md/2 . y/detX - (T XN—1p)d/2
Tz—l d/2 Tl 2

2d/2—1r(%)

qr|,(7) is generalized gamma distribution with zero
location parameter, scale parameter

9 1/2
8= TS —1
LT

and shape parameters
a=d/2 v =2




Algorithm 2: Skipping Random Walk Metropolis algorithm (n-th step)
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Input :The n-th sample X,, € R?
Set X := X,;

Generate the initial SRWM proposal Y distributed according to the density ¢(u — X)du;

Calculate the direction ¢ = (Y — X)/|Y — X|;
Generate a halting index K ~ K;

Set k=1and Z, :=Y;

while 7, € C¢ and k < K do

Generate a distance increment R distributed according to g, (+|¢);

Set Zpi 1 = Zr + OR;
Increase k by one;
end
Set Z := Zy;
Evaluate the acceptance probability:

: m(Z)
min (1, =59
L,

a(X,Z)z{

Generate a uniform random variable U on (0, 1);

if U < a(X,Z) then
’ Xog1 = Z;

else
‘ Xnt1 = X

end

return X,

) if 7(X) # 0,

otherwise,




let I'obe the first entry time of the skipping chain
infto C. thatis T :=min{k >1 : Z, € C}.

assume the halting regime K = {K,, | ¢ € Sd_l}

and the subset C' are such that

vV c RY sup E; [Tc AN K,] < o0
SOESd_l



(MVZ197?)

Assume the halting regime K = {K, | ¢ € S4-11,

the subset C' and the proposal density are as before.

Then the skipping RWM algorithm:

 is a MH algorithm for a proposal density gsK which
is symmetric on C;

* is7T-Irreducible and has unigue stationary
probability measure Tr;

« the SLLN holds;

* is provably faster than the classical MH algorithm.



future work

extensive numerics for power grids

- large-scale transmission network
- realistic distributions for disturbances

finish writing the paper about the skipping sampler...

find new applications for skipping sampling

- queueing systems?e
- random matrices?
- random graphse
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absolute values power flows line failure decay rates

our large deviations framework enables the
correct identification of network vulnerabilities!
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