

Extremal GI/GI/1 Queues Given First Two Moments

Yan Chen (joint work with Ward Whitt) Industrial Engineering & Operations Research Department Columbia University

Young European Queueing Theorists XII

Monday 3rd December, 2018

Presented by Yan Chen

• Queueing Network Analyzer in Whitt (1983).

- ▶ Queueing Network Analyzer in Whitt (1983).
- ► Evaluate Quality of Queueing Approximations.

- ▶ Queueing Network Analyzer in Whitt (1983).
- ► Evaluate Quality of Queueing Approximations.
- Propose Tight Upper & Lower Bounds for Queueing Characteristics (*Extremal Queueing Models*).

- ▶ Queueing Network Analyzer in Whitt (1983).
- ► Evaluate Quality of Queueing Approximations.
- Propose Tight Upper & Lower Bounds for Queueing Characteristics (*Extremal Queueing Models*).

Research Question: How to Explore Extremal Queues?

•000

GI/GI/1 Model:

• unlimited waiting room and FCFS discipline.

0000

GI/GI/1 Model:

- unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.

0000

GI/GI/1 Model:

- unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.
- second moments $m_2 = (1 + c_a^2)m_1^2, s_2 = (1 + c_s^2)s_1^2$.

0000

GI/GI/1 Model:

- ▶ unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.
- second moments $m_2 = (1 + c_a^2)m_1^2, s_2 = (1 + c_s^2)s_1^2$.
- inter-arrival time U distributed as F over $[0, M_a]$.

0000

GI/GI/1 Model:

- ▶ unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.
- second moments $m_2 = (1 + c_a^2)m_1^2, s_2 = (1 + c_s^2)s_1^2$.
- inter-arrival time U distributed as F over $[0, M_a]$.
- service time V distributed as G over $[0, \rho M_s]$.

0000

GI/GI/1 Model:

- ▶ unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.
- second moments $m_2 = (1 + c_a^2)m_1^2, s_2 = (1 + c_s^2)s_1^2$.
- inter-arrival time U distributed as F over $[0, M_a]$.
- service time V distributed as G over $[0, \rho M_s]$.

Related Literature:

0000

GI/GI/1 Model:

- ▶ unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.
- second moments $m_2 = (1 + c_a^2)m_1^2, s_2 = (1 + c_s^2)s_1^2$.
- inter-arrival time U distributed as F over $[0, M_a]$.
- service time V distributed as G over $[0, \rho M_s]$.

Related Literature:

 Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b), Daley (1992), Wolff and Wang (2003).

000

GI/GI/1 Model:

- ▶ unlimited waiting room and FCFS discipline.
- mean inter-arrival time and service time $(m_1 = 1, s_1 = \rho)$.
- second moments $m_2 = (1 + c_a^2)m_1^2, s_2 = (1 + c_s^2)s_1^2$.
- inter-arrival time U distributed as F over $[0, M_a]$.
- service time V distributed as G over $[0, \rho M_s]$.

Related Literature:

- Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b), Daley (1992), Wolff and Wang (2003).
- Bertsmimas and Natarajan (2007), Gupta and Osogami (2011), Osogami and Raymond (2013).

0000

▶ $\mathcal{P}_2(M)$: cdf's with support in the interval [0, mM] given mean m and second moment $(c^2 + 1)m^2$.

0000

- ▶ $\mathcal{P}_2(M)$: cdf's with support in the interval [0, mM] given mean m and second moment $(c^2 + 1)m^2$.
- $\mathcal{P}_{2,k}(M)$: cdf's with finite k support in $\mathcal{P}_2(M)$.

0000

- ▶ $\mathcal{P}_2(M)$: cdf's with support in the interval [0, mM] given mean m and second moment $(c^2 + 1)m^2$.
- $\mathcal{P}_{2,k}(M)$: cdf's with finite k support in $\mathcal{P}_2(M)$.
- ► **Steady-state** Waiting Time:

$$W \stackrel{\mathrm{d}}{=} [W + V - U]^+,$$

with $W_0 = 0$.

$$w: \mathcal{P}_{a,2}(M_a) \times \mathcal{P}_{s,2}(M_s) \to \mathbb{R},$$

where $0 < \rho < 1$ and

 $w(F,G) \equiv E[W(F,G)].$

Background 0000

Background

▶ Pollaczek-Khintchine formula:

$$E[W(M,G)] = \frac{\tau\rho(1+c_s^2)}{2(1-\rho)} = \frac{\rho^2(1+c_s^2)}{2(1-\rho)}$$

Background 0000

Background

▶ Pollaczek-Khintchine formula:

$$E[W(M,G)] = \frac{\tau\rho(1+c_s^2)}{2(1-\rho)} = \frac{\rho^2(1+c_s^2)}{2(1-\rho)}$$

▶ Kingman (1962) bound:

$$E[W(F,G)] \le \frac{\rho^2([c_a^2/\rho^2] + c_s^2)}{2(1-\rho)}$$

Background 0000

Background

▶ Pollaczek-Khintchine formula:

$$E[W(M,G)] = \frac{\tau\rho(1+c_s^2)}{2(1-\rho)} = \frac{\rho^2(1+c_s^2)}{2(1-\rho)}$$

► Kingman (1962) bound:

$$E[W(F,G)] \le \frac{\rho^2([c_a^2/\rho^2] + c_s^2)}{2(1-\rho)}$$

▶ Daley (1977) bound:

$$E[W(F,G)] \le \frac{\rho^2([(2-\rho)c_a^2/\rho] + c_s^2)}{2(1-\rho)}$$

We want to answer a Long Standing Open Problem in Queueing Theory.

We want to answer a Long Standing Open Problem in Queueing Theory.

▶ Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?

We want to answer a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
- Given any F, what is the **extremal service time dist** G^* attaining the UB of $\mathbb{E}[W(F,G)]$?

We want to answer a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
- Given any F, what is the **extremal service time dist** G^* attaining the UB of $\mathbb{E}[W(F,G)]$?
- ▶ What are the extremal F^* and G^* leading to overall UB of $\mathbb{E}[W(F,G)]$?

Two-point distributions (one parameter family):

►
$$F \in \mathcal{P}_{a,2,2}(M_a)$$
: $c_a^2/(c_a^2 + (b_a - 1)^2)$ at b_a ,
 $(b_a - 1)^2/(c_a^2 + (b_a - 1)^2)$ at $1 - c_a^2/(b_a - 1)$
where $1 + c_a^2 \le b_a \le M_a$.

00000

Two-point distributions (one parameter family):

►
$$F \in \mathcal{P}_{a,2,2}(M_a)$$
: $c_a^2/(c_a^2 + (b_a - 1)^2)$ at b_a ,
 $(b_a - 1)^2/(c_a^2 + (b_a - 1)^2)$ at $1 - c_a^2/(b_a - 1)$
where $1 + c_a^2 \le b_a \le M_a$.

•
$$G \in \mathcal{P}_{s,2,2}(M_s)$$
: $c_s^2/(c_s^2 + (b_s - 1)^2)$ at ρb_s ,
 $(b_s - 1)^2/(c_s^2 + (b_s - 1)^2)$ at $\rho(1 - c_s^2/(b_s - 1))$
where $1 + c_s^2 \le b_s \le M_s$.

00000

Two-point distributions (one parameter family):

►
$$F \in \mathcal{P}_{a,2,2}(M_a)$$
: $c_a^2/(c_a^2 + (b_a - 1)^2)$ at b_a ,
 $(b_a - 1)^2/(c_a^2 + (b_a - 1)^2)$ at $1 - c_a^2/(b_a - 1)$
where $1 + c_a^2 \le b_a \le M_a$.

•
$$G \in \mathcal{P}_{s,2,2}(M_s)$$
: $c_s^2/(c_s^2 + (b_s - 1)^2)$ at ρb_s ,
 $(b_s - 1)^2/(c_s^2 + (b_s - 1)^2)$ at $\rho(1 - c_s^2/(b_s - 1))$
where $1 + c_s^2 \le b_s \le M_s$.

• $F = F_0$ for $b_a = 1 + c_a^2$ and $F = F_u$ when $b_a = M_a$.

00000

Two-point distributions (one parameter family):

- ► $F \in \mathcal{P}_{a,2,2}(M_a)$: $c_a^2/(c_a^2 + (b_a 1)^2)$ at b_a , $(b_a - 1)^2/(c_a^2 + (b_a - 1)^2)$ at $1 - c_a^2/(b_a - 1)$ where $1 + c_a^2 \le b_a \le M_a$.
- $G \in \mathcal{P}_{s,2,2}(M_s)$: $c_s^2/(c_s^2 + (b_s 1)^2)$ at ρb_s , $(b_s - 1)^2/(c_s^2 + (b_s - 1)^2)$ at $\rho(1 - c_s^2/(b_s - 1))$ where $1 + c_s^2 \le b_s \le M_s$.
- $F = F_0$ for $b_a = 1 + c_a^2$ and $F = F_u$ when $b_a = M_a$.
- $G = G_0$ for $b_s = 1 + c_s^2$ and $G = G_u$ when $b_s = M_s$.

0000

Main Results for Extremal Queues

• (a) Given any parameter vector $(1, c_a^2, \rho, c_s^2)$ over bounded support $[0, M_a]$ and $[0, \rho M_s]$, the pair (F_0, G_u) attains the tight UB of the steady-state mean E[W(F, G)], while a pair $(F_0, G_{u,n})$ attains the tight UB of the transient mean $E[W_n(F, G)]$, where $G_{u,n}$ is a two-point distribution with $G_{u,n} \Rightarrow G_u$ as $n \to \infty$.

Main Results for Extremal Queues

- ▶ (b) For the unbounded interval of support $[0, \infty)$, the tight UB of E[W] is not attained directly, but is obtained asymptotically in the limit as $M_s \to \infty$ in part (a).
- (c) The mean $E[W(F_0, G_u)]$ does not approach the mean in the associated extremal $F_0/D/1$ queue as $M_s \to \infty$, yet approach to $\lim_{M_s\to\infty} E[(W(F_0, G_u)] (\mathbb{E}[W(F_0, G_{u^*})]).$

Main Results for Upper Bound

Overall Upper Bound Inequalities:

Main Results for Upper Bound

Overall Upper Bound Inequalities:

 $\mathbb{E}[W(F,G)] \leq \mathbb{E}[W(F_0,G_{u^*})]$ (Tight UB)

Summary 00000

Main Results for Upper Bound

Overall Upper Bound Inequalities:

$$\mathbb{E}[W(F,G)] \leq \mathbb{E}[W(F_0, G_{u^*})] \text{(Tight UB)}$$

$$\leq \frac{2(1-\rho)\rho/(1-\delta)c_a^2 + \rho^2 c_s^2}{2(1-\rho)} \text{(UB Approx)}$$

Main Results for Upper Bound

Overall Upper Bound Inequalities:

$$\mathbb{E}[W(F,G)] \leq \mathbb{E}[W(F_0,G_{u^*})](\text{Tight UB}) \\ \leq \frac{2(1-\rho)\rho/(1-\delta)c_a^2+\rho^2 c_s^2}{2(1-\rho)}(\text{UB Approx}) \\ < \frac{\rho^2([(2-\rho)c_a^2/\rho]+c_s^2)}{2(1-\rho)}(\text{Daley}(1977))$$

00000

Main Results for Upper Bound

Overall Upper Bound Inequalities:

$$\mathbb{E}[W(F,G)] \leq \mathbb{E}[W(F_0, G_{u^*})](\text{Tight UB}) \\
 \leq \frac{2(1-\rho)\rho/(1-\delta)c_a^2+\rho^2 c_s^2}{2(1-\rho)}(\text{UB Approx}) \\
 < \frac{\rho^2([(2-\rho)c_a^2/\rho]+c_s^2)}{2(1-\rho)}(\text{Daley(1977)}) \\
 < \frac{\rho^2([c_a^2/\rho^2]+c_s^2)}{2(1-\rho)}(\text{Kingman}(1962))$$

00000

Main Degulta for Ur

Overall Upper Bound Inequalities:

$$\mathbb{E}[W(F,G)] \leq \mathbb{E}[W(F_0, G_{u^*})] \text{(Tight UB)} \\
\leq \frac{2(1-\rho)\rho/(1-\delta)c_a^2+\rho^2 c_s^2}{2(1-\rho)} \text{(UB Approx)} \\
< \frac{\rho^2([(2-\rho)c_a^2/\rho]+c_s^2)}{2(1-\rho)} \text{(Daley(1977))} \\
< \frac{\rho^2([c_a^2/\rho^2]+c_s^2)}{2(1-\rho)} \text{(Kingman(1962))}$$

where $\delta \in (0, 1)$ and $\delta = \exp(-(1 - \delta)/\rho)$.

Main Results for Upper Bound

Table: A comparison of the bounds and approximations for the steady-state mean $\mathbb{E}[W]$ as a function of ρ for the case $c_a^2 = c_s^2 = 4.0$.

ρ	Tight LB	HTA	Tight UB	UB Approx	δ	MRE	Daley	Kingman
0.10	0.00	0.044	0.422	0.422	0.000	0.003%	0.44	2.24
0.20	0.00	0.200	0.904	0.906	0.007	0.19%	1.00	2.60
0.30	0.00	0.514	1.499	1.51	0.041	0.60%	1.71	3.11
0.40	0.00	1.07	2.304	2.33	0.107	0.94%	2.67	3.87
0.50	0.25	2.00	3.470	3.51	0.203	1.15%	4.00	5.00
0.60	1.00	3.60	5.295	5.35	0.324	1.07%	6.00	6.80
0.70	2.42	6.53	8.441	8.52	0.467	0.93%	9.33	9.93
0.80	5.50	12.80	14.92	15.02	0.629	0.67%	16.00	16.40
0.90	15.25	32.40	34.72	34.84	0.807	0.35%	36.00	36.20
0.95	35.13	72.20	74.62	74.76	0.902	0.18%	76.00	76.10
0.98	95.05	192.1	194.6	194.7	0.960	0.07%	196.0	196.0
0.99	195.0	392.0	394.5	394.7	0.980	0.04%	396.0	396.0

Extremal GI/GI/1 Queues

Main Reduction Theorem

Theorem

(reduction to a three-point distribution) Consider the class of GI/GI/1 queues with $cdf \ F \in \mathcal{P}_{a,2}$ with $cdf \ G \in \mathcal{P}_{s,2}$ where $0 < \rho < 1$, the following suprema are attained as indicated:

 $\begin{aligned} (G) &= \sup \left\{ w(F,G) : F \in \mathcal{P}_{a,2}(M_a) \right\} \\ &= \sup \left\{ w(F,G) : F \in \mathcal{P}_{a,2,3}(M_a) \right\} = w(F^*(G),G). \end{aligned}$

Main Reduction Theorem

Theorem

(reduction to a three-point distribution) Consider the class of GI/GI/1 queues with $cdf \ F \in \mathcal{P}_{a,2}$ with $cdf \ G \in \mathcal{P}_{s,2}$ where $0 < \rho < 1$, the following suprema are attained as indicated:

(a) For any specified $G \in \mathcal{P}_{s,2}$, there exists $F^*(G) \in \mathcal{P}_{a,2,3}(M_a)$ such that

 $w_a^{\uparrow}(G) \equiv \sup \{ w(F,G) : F \in \mathcal{P}_{a,2}(M_a) \}$ = sup { $w(F,G) : F \in \mathcal{P}_{a,2,3}(M_a) \} = w(F^*(G),G).$

Main Reduction Theorem

Theorem

(continued)

(b) For any specified $F \in \mathcal{P}_{a,2}$, there exists $G^*(F) \in \mathcal{P}_{s,2,3}(M_s)$ such that

(c) There exists (F^{**}, G^{**}) in $\mathcal{P}_{a,2,3}(M_a) \times \mathcal{P}_{s,2,3}(M_s)$ such that

$$w^{\uparrow} \equiv \sup \{w(F,G) : F \in \mathcal{P}_{a,2}, G \in \mathcal{P}_{s,2}(M_s)\} \\ = \sup \{w(F,G) : F \in \mathcal{P}_{a,2,3}(M_a), G \in \mathcal{P}_{s,2,3}(M_s)\} \\ = w(F^{**}, G^{**}) = w^{\uparrow}_a(G^{**}) = w^{\uparrow}_s(F^{**}).$$

• Start with $W \stackrel{\mathrm{d}}{=} [W + V_G - U_F]^+$.

 Optimize written as

•0

• Start with
$$W \stackrel{\mathrm{d}}{=} [W + V_G - U_F]^+$$
.

• $E[W] = E[(W + V - U)^+] = \int_0^{M_a} \phi(u) dF$ for ϕ expressed as the double integral

$$\phi(u) \equiv \int_0^\infty \int_0^\infty (x+v-u)^+ \, dG(v) \, dH(x), \quad 0 \le u \le M_a.$$

• Start with
$$W \stackrel{\mathrm{d}}{=} [W + V_G - U_F]^+$$
.

► $E[W] = E[(W + V - U)^+] = \int_0^{M_a} \phi(u) dF$ for ϕ expressed as the double integral

$$\phi(u) \equiv \int_0^\infty \int_0^\infty (x+v-u)^+ \, dG(v) \, dH(x), \quad 0 \le u \le M_a.$$

▶ Optimize over F: $\sup_{F \in \mathcal{P}_{a,2}(M_a)} \int_0^{M_a} \phi(u) dF$. It can be written as

$$\sup \{ E[(W + V - U)^+] : F_U \in \mathcal{P}_{a,2}(M_a) \}.$$

• Start with
$$W \stackrel{\mathrm{d}}{=} [W + V_G - U_F]^+$$
.

► $E[W] = E[(W + V - U)^+] = \int_0^{M_a} \phi(u) dF$ for ϕ expressed as the double integral

$$\phi(u) \equiv \int_0^\infty \int_0^\infty (x+v-u)^+ \, dG(v) \, dH(x), \quad 0 \le u \le M_a.$$

▶ Optimize over F: $\sup_{F \in \mathcal{P}_{a,2}(M_a)} \int_0^{M_a} \phi(u) dF$. It can be written as

$$\sup \{ E[(W + V - U)^+] : F_U \in \mathcal{P}_{a,2}(M_a) \}.$$

• Update $W_1 = (W + V - U_{F_1})^+$. $\mathbb{E}[W_1] \ge \mathbb{E}[W]$

• Start with
$$W \stackrel{\mathrm{d}}{=} [W + V_G - U_F]^+$$
.

► $E[W] = E[(W + V - U)^+] = \int_0^{M_a} \phi(u) dF$ for ϕ expressed as the double integral

$$\phi(u) \equiv \int_0^\infty \int_0^\infty (x+v-u)^+ \, dG(v) \, dH(x), \quad 0 \le u \le M_a.$$

► Optimize over F: $\sup_{F \in \mathcal{P}_{a,2}(M_a)} \int_0^{M_a} \phi(u) dF$. It can be written as

$$\sup \{ E[(W + V - U)^+] : F_U \in \mathcal{P}_{a,2}(M_a) \}.$$

- Update $W_1 = (W + V U_{F_1})^+$. $\mathbb{E}[W_1] \ge \mathbb{E}[W]$
- ► Repeat to obtain $W_2 = (W_1 + V U_{F_2})^+$. $\mathbb{E}[W_2] \ge \mathbb{E}[W_1]$?

Suppose fixed point exists:

$$(W(F^*, G) + V - U_{F^*})^+ \stackrel{d}{=} W(F^*, G).$$

With the property

$$E[(W(F^*, G) + V - U_{F^*})^+]$$

= sup { $E[(W(F, G) + V - U_F)^+] : F \in \mathcal{P}_{a,2}(M_a)$ }.

00

Suppose fixed point exists:

$$(W(F^*, G) + V - U_{F^*})^+ \stackrel{d}{=} W(F^*, G).$$

With the property

$$E[(W(F^*, G) + V - U_{F^*})^+]$$

= sup { $E[(W(F, G) + V - U_F)^+] : F \in \mathcal{P}_{a,2}(M_a)$ }.

• Show $F^* \in \mathcal{P}_{a,2,3}(M_a)$.

00

Relate to Transient Mean Waiting Time

Theorem

(reduction to the transient mean) Consider GI/GI/1 queues given first two moments and bounded support,

(a) For any specified $G \in \mathcal{P}_{s,2}$, if there exists $F_n \in \mathcal{P}_{a,2,3}(M_a)$ such that

$$w_n(F_n,G) = w_{a,n}^{\uparrow}(G) \equiv \sup \{w_n(F,G) : F \in \mathcal{P}_{a,2}(M_a)\},\$$

then the sequence $\{F_n : n \ge 1\}$ is tight, so that there exists a convergent subsequence. Moreover, if F is the limit of any convergent subsequence, then F is in $\mathcal{P}_{a,2,3}(M_a)$ and F is optimal for E[W(F,G)].

Relate to Transient Mean Waiting Time

Theorem

(continued) (b) For any specified $F \in \mathcal{P}_{a,2}$, if there exists

 $G_n \in \mathcal{P}_{s,2}(M_a)$ such that

$$w_n(F,G_n) = w_{s,n}^{\uparrow}(F) \equiv \sup \{w_n(F,G) : G \in \mathcal{P}_{s,2}(M_a)\},\$$

then the sequence $\{G_n : n \ge 1\}$ is tight, so that there exists a convergent subsequence. Moreover, if G is the limit of any convergent subsequence, then G is in $\mathcal{P}_{s,2,3}(M_s)$ and G is optimal for E[W(F,G)].

(c) If there exists (F_n, G_n) in $\mathcal{P}_{a,2,3}(M_a) \times \mathcal{P}_{s,2,3}(M_s)$ such that

 $w_n(F_n, G_n) = w_n^{\uparrow} \equiv \sup \{ w_n(F, G) : F \in \mathcal{P}_{a,2}(M_a), G \in \mathcal{P}_{s,2}(M_s) \},\$

In the bounded support three-point distribution space,

$$P_k(\mathbf{v}, \mathbf{p}) \equiv \frac{k! p_1^{k_1} p_2^{k_2} p_3^{k_3}}{k_1! k_2! k_3!},$$

$$Q_w(\mathbf{u}, \mathbf{q}) \equiv \frac{w! q_1^{w_1} q_2^{w_2} q_3^{w_3}}{w_1! w_2! w_3!}$$

In the bounded support three-point distribution space,

$$P_k(\mathbf{v}, \mathbf{p}) \equiv \frac{k! p_1^{k_1} p_2^{k_2} p_3^{k_3}}{k_1! k_2! k_3!},$$

$$Q_w(\mathbf{u}, \mathbf{q}) \equiv \frac{w! q_1^{w_1} q_2^{w_2} q_3^{w_3}}{w_1! w_2! w_3!}$$

$$E[W_n] = \sum_{k=1}^n \frac{1}{k} \sum_{(\mathbf{k}, \mathbf{w}) \in \mathcal{I}} \max\{0, \sum_{i=1}^3 (k_i v_i - w_j u_j)\} P_k(\mathbf{v}, \mathbf{p}) Q_w(\mathbf{u}, \mathbf{q}).$$

Extremal GI/GI/1 Queues

18 / 29

A tractable formulation for optimizing $\mathbb{E}[W_n]$:

$$\begin{aligned} \text{maximize} \quad \sum_{k=1}^{n} \frac{1}{k} \sum_{\substack{k_i = k, \sum w_j = k}} \max(\sum_i k_i v_i - \sum_j w_j u_i, 0) P(k_1, k_2, k_3) Q(w_1, w_2, w_3) \\ \text{subject to} \quad \sum_{j=1}^{3} v_j p_j = s_1, \quad \sum_{j=1}^{3} v_j^2 p_j = (1 + c_s^2) s_2^2, \\ \sum_{j=1}^{3} u_j q_j = m_1, \quad \sum_{j=1}^{3} u_j^2 q_j = (1 + c_a^2) m_1^2, \\ \sum_{j=1}^{3} p_j = \sum_{k=1}^{3} q_k = 1, \\ M_s \ge v_j \ge 0, \ M_a \ge u_j \ge 0, \ p_j \ge 0, \ q_j \ge 0, \quad 1 \le j \le 3. \end{aligned}$$

- all local optima in $\mathcal{P}_{a,2,2} \times \mathcal{P}_{s,2,2}$.
- ▶ $E[W(F_0, G_{u,n})]$ is larger than for other local optima.
- ► $G_{u,n}$ denote there is a optimal $b_s^*(n, M_s)$ (not necessary to be equal to M_s).

- all local optima in $\mathcal{P}_{a,2,2} \times \mathcal{P}_{s,2,2}$.
- ▶ $E[W(F_0, G_{u,n})]$ is larger than for other local optima.
- ▶ $G_{u,n}$ denote there is a optimal $b_s^*(n, M_s)$ (not necessary to be equal to M_s).

Table: Numerical values of $E[W_n(F_0, G_{u,n})]$ from the optimization and numerical search for $c_a^2 = c_s^2 = 4.0$ for $M_a = M_s = 10$

\overline{n}	$\rho = 0.1$	$\rho = 0.2$	$\rho = 0.3$	$\rho = 0.4$	$\rho = 0.5$	$\rho = 0.6$	$\rho = 0.7$	$\rho = 0.8$	$\rho = 0.9$
1	0.080	0.160	0.240	0.320	0.400	0.489	0.579	0.668	0.758
5	0.269	0.538	0.813	1.095	1.414	1.777	2.140	2.505	2.882
10	0.357	0.716	1.102	1.525	2.056	2.634	3.228	3.869	4.555
15	0.386	0.778	1.220	1.744	2.410	3.137	3.949	4.832	5.776
20	0.395	0.804	1.281	1.871	2.626	3.508	4.499	5.602	6.808
25	0.399	0.814	1.313	1.948	2.781	3.782	4.933	6.242	7.693
30	0.400	0.820	1.332	1.999	2.896	3.992	5.291	6.794	8.508
35	0.400	0.822	1.343	2.032	2.979	4.163	5.590	7.270	9.185
40	0.400	0.824	1.349	2.056	3.040	4.299	5.846	7.696	9.858
45	0.400	0.824	1.354	2.072	3.088	4.411	6.067	8.075	10.423
50	0.400	0.825	1.356	2.084	3.126	4.505	6.260	8.421	11.002

Numerics and Simulation Search over $\mathcal{P}_{a,2,2} \times \mathcal{P}_{s,2,2}$

Table: Numerical estimates of $E[W_{20}]$ as a function of b_a and b_s when $\rho = 0.5$, $c_a^2 = c_s^2 = 4.0$ and $M_a = 7 < M_s = 10$.

$\overline{b_s \setminus b_a}$	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00
5.0	2.497	2.530	2.518	2.497	2.469	2.439	2.406	2.371	2.335
5.5	2.557	2.414	2.420	2.422	2.402	2.378	2.351	2.320	2.288
6.0	2.561	2.447	2.328	2.318	2.328	2.312	2.290	2.266	2.239
7.0	2.549	2.447	2.331	2.204	2.165	2.149	2.154	2.150	2.132
8.0	2.556	2.430	2.319	2.208	2.074	2.029	2.021	2.010	2.007
9.0	2.598	2.456	2.310	2.183	2.068	1.937	1.895	1.903	1.898
10.0	2.626	2.506	2.353	2.188	2.043	1.921	1.786	1.779	1.789

Numerics and Simulation Search over $\mathcal{P}_{a,2,2} \times \mathcal{P}_{s,2,2}$

Table: Simulation estimates of E[W] as a function of b_a and b_s when $\rho = 0.5$, $c_a^2 = c_s^2 = 4.0$ and $M_a = 7 < M_s = 10$.

7 \ 7	٣.00	5.05	F F 0		0.00	0.05	0.50	0.75	7.0
$b_s \setminus b_a$	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.0
5.0	3.110	3.134	3.117	3.083	3.040	2.997	2.950	2.910	2.863
5.5	3.179	3.026	3.019	3.009	2.975	2.938	2.901	2.860	2.823
6.0	3.191	3.065	2.932	2.907	2.905	2.876	2.844	2.809	2.767
7.0	3.181	3.067	2.942	2.797	2.748	2.720	2.713	2.691	2.670
8.0	3.195	3.056	2.934	2.810	2.664	2.611	2.591	2.564	2.553
9.0	3.239	3.092	2.931	2.792	2.663	2.525	2.472	2.467	2.449
10.0	3.282	3.142	2.986	2.812	2.640	2.507	2.367	2.350	2.349

We want to address a Long Standing Open Problem in Queueing Theory.

We want to address a Long Standing Open Problem in Queueing Theory.

• Given any G, what is the **extremal inter-arrival time** dist F^* attaining the UB of $\mathbb{E}[W(F,G)]$?

We want to address a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
 - Answer: three point dist F^* .

We want to address a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
 - Answer: three point dist F^* .
- Given any F, what is the **extremal service time dist** G^* attaining the UB of $\mathbb{E}[W(F,G)]$?

We want to address a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
 - Answer: three point dist F^* .
- Given any F, what is the **extremal service time dist** G^* attaining the UB of $\mathbb{E}[W(F,G)]$?
 - Answer: three point dist G^* .

We want to address a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
 - Answer: three point dist F^* .
- Given any F, what is the **extremal service time dist** G^* attaining the UB of $\mathbb{E}[W(F,G)]$?

• Answer: three point dist G^* .

▶ What are the **extremal** F^* and G^* leading to overall UB of $\mathbb{E}[W(F,G)]$?

We want to address a Long Standing Open Problem in Queueing Theory.

- ► Given any G, what is the extremal inter-arrival time dist F* attaining the UB of E[W(F,G)]?
 - Answer: three point dist F^* .
- Given any F, what is the **extremal service time dist** G^* attaining the UB of $\mathbb{E}[W(F,G)]$?

• Answer: three point dist G^* .

▶ What are the **extremal** F^* and G^* leading to overall UB of $\mathbb{E}[W(F,G)]$?

• Answer: the pair F_0, G_u .

Impact of Inter-arrival Time

Figure: Simulation estimates of the transient mean $E[W_{20}]$ (left) and the steady-state mean E[W] (right) as a function of b_a for six cases of b_s the in the case $\rho = 0.5$, $c_a^2 = c_s^2 = 4.0$ and $M_a = M_s = 30$.

Impact of Service Time

Figure: $E[W(F_0, G)]$ for $G \in \mathcal{P}_{s,2,2}$ as a function of b_s given $b_a = (1 + c_a^2)$.

Counterexamples

Conjecture

Given any $G \in \mathcal{P}_{s,2}$, the extremal inter-arrival time is F_0 . Given any $F \in \mathcal{P}_{a,2}$, the extremal service time is G_0, G_u .

Counterexamples

Conjecture

Given any $G \in \mathcal{P}_{s,2}$, the extremal inter-arrival time is F_0 . Given any $F \in \mathcal{P}_{a,2}$, the extremal service time is G_0, G_u .

Figure: The E[W]: a function of b_a in $[(1 + c_a^2), M_a = 7]$ for $b_s = 5$, i.e., for G_0 (left) and as a function of b_s in $[(1 + c_s^2), M_s = 20]$ for b_a (right). Yan Chen Extremal GI/GI/1 Queues

26 / 29

Conjectures

Theorem

(Counterexamples) Fix any service time dist G, $F^*(G) = F_0$; Fix any inter-arrival dist F, $G^*(F)$ is G_0 or G_u . The both arguments are *invalid*.

(Chen and Whitt I) Fix any G, the extremal $F^*(G)$ is a two-point distribution.

(Chen and Whitt II) Fix any two-point F, the extremal G^{*}(F is a two-point distribution.

Conjectures

Theorem

(Counterexamples) Fix any service time dist G, $F^*(G) = F_0$; Fix any inter-arrival dist F, $G^*(F)$ is G_0 or G_u . The both arguments are *invalid*.

Conjecture

(Chen and Whitt I) Fix any G, the extremal $F^*(G)$ is a two-point distribution.

(Chen and Whitt II) Fix any two-point F, the extremal G^{*}(is a two-point distribution.

Conjectures

Theorem

(Counterexamples) Fix any service time dist G, $F^*(G) = F_0$; Fix any inter-arrival dist F, $G^*(F)$ is G_0 or G_u . The both arguments are *invalid*.

Conjecture

(Chen and Whitt I) Fix any G, the extremal $F^*(G)$ is a two-point distribution.

Conjecture

(Chen and Whitt II) Fix any two-point F, the extremal $G^*(F)$ is a two-point distribution.

Upper Bound Inequality

Overall Upper Bound:

$\delta \in (0,1)$ and

 $\begin{array}{l} (an \ UB \ for \ E[W(F_0,G_{u^*})]) \ For \ the \ GI/GI/1 \ queue \ with \\ parameter \ four-tuple \ (1,c_a^2,\rho,c_s^2), \ if \ E[W(F_0,G_{u^*})] \ is \ UB, \ then \\ \\ E[W(F_0,G_{u^*})] \leq \frac{2(1-\rho)\rho/(1-\delta)c_u^2+\rho^2c_s^2}{2(1-\rho)}. \end{array}$

Upper Bound Inequality

Overall Upper Bound:

$$\mathbb{E}[W(F,G)] \leq \mathbb{E}[W(F_0,G_{u^*})]$$
$$\leq \frac{2(1-\rho)\rho/(1-\delta)c_a^2+\rho^2c_s^2}{2(1-\rho)}$$

 $\delta \in (0,1)$ and $\delta = \exp(-(1-\delta)/\rho)$.

(an UB for $E[W(F_0, G_{u^*})]$) For the GI/GI/1 queue with parameter four-tuple $(1, c_a^2, \rho, c_s^2)$, if $E[W(F_0, G_{u^*})]$ is UB, then

 $E[W(F_0,G_{u^*})] \leq rac{2(1ho)
ho/(1-\delta)c_a^2+
ho^2c_s^2}{2(1ho)}.$

Upper Bound Inequality

Overall Upper Bound:

$$\begin{split} \mathbb{E}[W(F,G)] &\leq & \mathbb{E}[W(F_0,G_{u^*})] \\ &\leq & \frac{2(1-\rho)\rho/(1-\delta)c_a^2 + \rho^2 c_s^2}{2(1-\rho)} \end{split}$$

 $\delta \in (0,1)$ and $\delta = \exp(-(1-\delta)/\rho)$.

Theorem

(an UB for $E[W(F_0, G_{u^*})]$) For the GI/GI/1 queue with parameter four-tuple $(1, c_a^2, \rho, c_s^2)$, if $E[W(F_0, G_{u^*})]$ is UB, then

$$E[W(F_0, G_{u^*})] \le \frac{2(1-\rho)\rho/(1-\delta)c_a^2 + \rho^2 c_s^2}{2(1-\rho)}.$$

Thank You!

Extremal GI/GI/1 Queues

29 / 29