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Motivation

» Queueing Network Analyzer in Whitt (1983).
» Evaluate Quality of Queueing Approximations.

» Propose Tight Upper & Lower Bounds for Queueing
Characteristics (Eztremal Queueing Models).

Research Question: How to Explore Extremal Queues?
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Basic Settings

GI/GI/1 Model:
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[ Jele]e]

Basic Settings

GI/GI/1 Model:
» unlimited waiting room and FCFS discipline.
» mean inter-arrival time and service time (m; = 1,51 = p).
» second moments my = (14 c¢2)m3, sg = (1 + c2)s3.
» inter-arrival time U distributed as F' over [0, M,].
» service time V' distributed as G over [0, pM].
Related Literature:

» Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

» Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).
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Basic Settings

» Po(M): cdf’s with support in the interval [0, mM]| given
mean m and second moment (¢ + 1)m?.
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[e] Je]e]

Basic Settings

» Po(M): cdf’s with support in the interval [0, mM]| given
mean m and second moment (¢ + 1)m?.

> Pop(M): cdf’s with finite k support in Py(M).

» Steady-state Waiting Time:

W W +V -0,
with Wy = 0.
w : Paa(Mg) X Psa(Ms) = R,
where 0 < p < 1 and

w(F,G) = E[W(F,QG)].
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Background

» Pollaczek-Khintchine formula:

_ T+ _ PP+
BV O =50 =0) = 3i=p)
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[e]e] le]

Background

» Pollaczek-Khintchine formula:

_ T+ _ PP+
BWMOI="50=0 ~ 210

» Kingman (1962) bound:

p*([ca/p?] + c3)
2(1-p)

EW(F,GQ)] <

» Daley (1977) bound:

P*([(2 = p)e2/pl +¢3)
E[W(F,G)] < B .
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Objectives
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Queueing Theory.

4% Yan Chen Extremal GI/GI/1 Queues 6 /29



[e]e]e] )

Objectives

We want to answer a Long Standing Open Problem in
Queueing Theory.

» Given any G, what is the extremal inter-arrival time
dist ™* attaining the UB of E[W (F,GQ)]?

A
o

4% Yan Chen Extremal GI/GI/1 Queues 6 /29



[e]e]e] )

Objectives

We want to answer a Long Standing Open Problem in
Queueing Theory.

» Given any G, what is the extremal inter-arrival time
dist ™* attaining the UB of E[W (F,GQ)]?

» Given any F, what is the extremal service time dist G*
attaining the UB of E[W (F, G)]?

A
Y3

4N Yan Chen Extremal GI/GI/1 Queues 6 /29



[e]e]e] )

Objectives

We want to answer a Long Standing Open Problem in
Queueing Theory.
» Given any G, what is the extremal inter-arrival time
dist ™* attaining the UB of E[W (F,GQ)]?
» Given any F', what is the extremal service time dist G*
attaining the UB of E[W (F, G)]?
» What are the extremal F* and G* leading to overall UB of
E[W (F,G)]?
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[ Jelele]e}

Extremal Distributions

Two-point distributions (one parameter family):
> F € Pasa(My): 2/(c2+ (ba — 1)?) at by,
(ba —1)?/(2 + (ba — 1)%) at 1 — c2/(by — 1)
where 1 + cg <b, < M,.
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> F € Pasa(My): 2/(c2+ (ba — 1)?) at by,
(ba — 1)2/(2 + (b —1)?) at 1 —c2/(bg — 1)
where 1 + cg <b, < M,.
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Main Results for Extremal Queues

» (a) Given any parameter vector (1,c2, p, c?) over bounded
support [0, M,] and [0, pM,], the pair (Fy, G,,) attains the
tight UB of the steady-state mean E[W (F,G)], while a pair
(Fo, Gu,n) attains the tight UB of the transient mean
E[W,(F,G)], where G, 5, is a two-point distribution with
Gyn = Gy as n — oo.
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Main Results for Extremal Queues

» (b) For the unbounded interval of support [0, 00), the tight
UB of E[W] is not attained directly, but is obtained
asymptotically in the limit as My — oo in part (a).

> (¢) The mean E[W (Fy, G,)] does not approach the mean in
the associated extremal F,/D/1 queue as My — oo, yet
approach to limys, oo E[(W (Fo, Gy)] (E[W (Fy, Gyux)]).

A
o

4N Yan Chen Extremal GI/GI/1 Queues

9 /29



[e]e]e] e}

Main Results for Upper Bound

Overall Upper Bound Inequalities:
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Main Results for Upper Bound

Overall Upper Bound Inequalities:

E[W(F,G)] < E[W(Fy,Gy-)](Tight UB)
2(1 - p)p/(1 = 8)ca + p*c}

. 2(1-p)

(UB Approx)
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EW(F,G)] < E[W/(Fy,Gy)](Tight UB)
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Main Results for Upper Bound

Overall Upper Bound Inequalities:

EW(F,G)] < E[W/(Fy,Gy)](Tight UB)
2(1 = p)p/(1 = 8)ca + pc
2(1-p)
P*([(2 = p)ez/p] +3)
2 2 2(21 N p2)
4 ([;‘E{p_]p-; <) (Kingman(1962))

where § € (0,1) and § = exp(—(1 —9)/p).

<

(UB Approx)

A

(Daley(1977))
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Main Results for Upper Bound

Table: A comparison of the bounds and approximations for the
steady-state mean E[W] as a function of p for the case ¢2 = ¢2 = 4.0.

p  Tight LB HTA Tight UB UB Approx ) MRE Daley Kingman
0.10 0.00 0.044 0.422 0.422 0.000 0.003% 0.44 2.24
0.20 0.00 0.200 0.904 0.906 0.007  0.19%  1.00 2.60
0.30 0.00 0.514 1.499 1.51 0.041 0.60% 1.71 3.11
0.40 0.00 1.07 2.304 2.33 0.107  0.94%  2.67 3.87
0.50 0.25 2.00 3.470 3.51 0.203 1.15%  4.00 5.00
0.60 1.00 3.60 5.295 5.35 0.324 1.07%  6.00 6.80
0.70 2.42 6.53 8.441 8.52 0.467 0.93%  9.33 9.93
0.80 5.50 12.80 14.92 15.02 0.629 0.67% 16.00 16.40
0.90 15.25 32.40 34.72 34.84 0.807 0.35%  36.00 36.20
0.95 35.13 72.20 74.62 74.76 0.902 0.18%  76.00 76.10
0.98 95.05 192.1 194.6 194.7 0.960 0.07%  196.0 196.0
0.99 195.0 392.0 394.5 394.7 0.980 0.04%  396.0 396.0
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Main Reduction Theorem

Theorem

(reduction to a three-point distribution) Consider the class of
GI/GI/1 queues with cdf F € Pyo with cdf G € Ps 2 where
0 < p < 1, the following suprema are attained as indicated:
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Main Reduction Theorem

Theorem

(reduction to a three-point distribution) Consider the class of
GI/GI/1 queues with cdf F € Pyo with cdf G € Ps 2 where
0 < p < 1, the following suprema are attained as indicated:

(a) For any specified G € P2, there ezists F*(G) € Py2,3(Ma)
such that
wl(G) = sup{w(F,G): F € Puo(M,))}
= sup{w(F,G): F € Pya3(My)} = w(F*(G),G).
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Main Reduction Theorem

Theorem

(continued)

(b) For any specified F' € P2, there ezists G*(F) € Ps23(Ms)
such that

wl(F) = sup{w(F,G):G € P,2(M,)}
= sup{w(F,G): G € Ps23(M,)} = w(F,G*(F)).

(¢) There exists (F**,G**) in Py 2.3(M,) x Ps23(Ms) such that

w’

sup {w(F,G) : F € Py 2,G € Pso(M)}
sup {w(F,G) : F € Py23(M,),G € Ps23(Ms)}
U)(F**,G**) _ U)I(G**) — wl(F**)
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Ideas of Proof for Case (a)

> Start with W < [W + Vg — Ug*.
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Ideas of Proof for Case (a)

> Start with W < [W + Vg — Ug*.
» EW|=E(W+V -U)t] = fM“ d(u)dF for ¢ expressed
as the double integral

E/m/oo(w—i—v—u)erG(v)dH(m), 0 <u< M,.
o Jo

> Optimize over F:: suppcp, , (M) fOM“ ¢(u)dF. Tt can be
written as

sup {E[(W +V —U)"] : Fy € Paa(M,)}.

» Update Wy = (W +V — Up)". E[W;] > E[W]
» Repeat to obtain Wy = (W1 +V — Ug,)". E[Ws] > E[W;] ?
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Ideas of Proof for Case (a)

» Suppose fixed point exists:
(W(F*,G)+V — UF*)+ =W(F*,G).
With the property

E[(W(F*,G)+V —Up«)"]
=sup {E[(W(F,G) +V —Up)"|: F € Po2(M,)}.
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Ideas of Proof for Case (a)

» Suppose fixed point exists:
(W(F*,G)+V —Up)" = W(F*,G).
With the property

E[(W(F*,G)+V —Up«)"]
=sup {E[(W(F,G) +V —Up)"|: F € Po2(M,)}.
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AJ
o

4N Yan Chen Extremal GI/GI/1 Queues 15 / 29



9000000000000 0

Relate to Transient Mean Waiting Time

Theorem

(reduction to the transient mean) Consider GI/GI/1 queues
given first two moments and bounded support,

(a) For any specified G € Ps o, if there exists F, € Py 23(M,)
such that

wp(Fn, G) = wg’n(G) = sup {w,(F,G) : F € Py2(M,)},

then the sequence {F,, : n > 1} is tight, so that there ezists a
convergent subsequence. Moreover, if F' is the limit of any
convergent subsequence, then F' is in Py 23(My) and F is
optimal for E[W (F,G)].

N
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Relate to Transient Mean Waiting Time

Theorem

(continued) (b) For any specified F' € Pq 2, if there exists
Gy € Ps2(M,) such that
wn(F, Gp) = wl,n(F) = sup {wn(F,G) : G € Ps2(Ma)},

then the sequence {G,, : n > 1} is tight, so that there exists a
convergent subsequence. Moreover, if G is the limit of any
convergent subsequence, then G is in Ps23(Ms) and G is
optimal for E[W (F,G)].

(c) If there exists (Fp, Gp) in Pa23(My) X Psa3(Ms) such that
W (Fn, Gp) = 'w,TZ =sup{wn(F,G) : F € Pa2(M,),G € Ps2(Ms)},

aﬁ then the sequence {(F,,G,) :n > 1} is tight.
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The Multinomial Representation

In the bounded support three-point distribution space,

ki1 ko k
k!p11p22p33

Py(v,p) = Tk Voo les!

w1 w2 W3

w!
Qulu,q) = =12
w1!w2!w3!

N
Ye.
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The Multinomial Representation

In the bounded support three-point distribution space,

kp§ ph2pl
Py(v,p) = W’

w1 w2 W3

Qulu,q) = M.
w1!w2!w3!

EW,] = Z Z max {0, Z (kv — wjug) }Pe(v, P)Quw(u, q).

k=1 (k,w)eT
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The Multinomial Representation

A tractable formulation for optimizing E[IV/,]:

n
1
maximize Z o Z max(Zk v; — ijuz,O)P(kl,kz,kg)Q(wl,wg,wg)

k=1" S ky=k,Y w;=k i
3 3
subject to » v;p; =s1, Zv 'pj =(1+c3)s3,
j=1 Jj=1
3
Z ujq; =mi, Zu iq; —(1+C )m17
j=1 j=1
3 3
dopi=Y a=1
Jj=1 k=

(1)

A
o
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The Multinomial Representation

» all local optima in Py 22 X P, 2.

» E[W(Fy,Gyn)| is larger than for other local optima.

» G, denote there is a optimal b%(n, M) (not necessary to
be equal to Ms).
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The Multinomial Representation

» all local optima in P, 22 X Ps22.

» E[W(Fy,Gyn)| is larger than for other local optima.

» G, denote there is a optimal b%(n, M) (not necessary to
be equal to My).

Table: Numerical values of E[W,,(Fo, Gy, )] from the optimization
and numerical search for ¢2 = ¢Z = 4.0 for M, = My = 10

n p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09
1 0.080 0.160 0.240 0.320 0.400 0.489 0.579 0.668 0.758
5 0.269 0.538 0.813 1.095 1.414 1.777 2.140 2.505 2.882
10 0.357 0.716 1.102 1.525 2.056 2.634 3.228 3.869 4.555
15 0.386 0.778 1.220 1.744 2.410 3.137 3.949 4.832 5.776
20 0.395 0.804 1.281 1.871 2.626 3.508 4.499 5.602 6.808
25  0.399 0.814 1.313 1.948 2.781 3.782 4.933 6.242 7.693
30 0.400 0.820 1.332 1.999 2.896 3.992 5.291 6.794 8.508
35 0.400 0.822 1.343 2.032 2.979 4.163 5.590 7.270 9.185
40 0.400 0.824 1.349 2.056 3.040 4.299 5.846 7.696 9.858
45 0.400 0.824 1.354 2.072 3.088 4.411 6.067 8.075  10.423
50  0.400 0.825 1.356 2.084 3.126 4.505 6.260 8421  11.002
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Numerics and Simulation Search over P, 22 X Ps22

Table: Numerical estimates of E[Wy] as a function of b, and bs when
p=05,c2=c2=4.0and M, =7 < My = 10.

bs\b, 5.00 525 550 575 6.00 625 6.50 6.75 7.00
5.0 2497 2530 2.518 2497 2469 2439 2406 2371 2335
5.5 2557 2414 2420 2422 2402 2378 2351 2320 2.288
6.0 2561 2447 2.328 2318 2.328 2312 2290 2.266 2.239
7.0 2549 2447 2331 2204 2165 2.149 2.154 2.150 2.132
8.0 2556 2430 2.319 2.208 2.074 2.029 2.021 2.010 2.007
9.0 2598 2456 2.310 2.183 2.068 1.937 1.895 1.903 1.898
10.0 2.626 2.506 2.353 2.188 2.043 1921 1.786 1.779 1.789
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Numerics and Simulation Search over P, 22 X Ps22

Table: Simulation estimates of E[W] as a function of b, and by when
p=05,c2=c2=4.0and M, =7 < My = 10.

bs\b, 5.00 525 550 575 6.00 625 6.50 6.75 7.0
5.0 3.110 3.134 3.117 3.083 3.040 2.997 2.950 2910 2.863
5.5 3179 3.026 3.019 3.009 2.975 2.938 2.901 2.860 2.823
6.0 3.191 3.065 2932 2907 2.905 2.876 2.844 2809 2.767
7.0 3181 3.067 2942 2.797 2.748 2.720 2.713 2.691 2.670
8.0 3195 3.056 2934 2810 2.664 2.611 2.591 2564 2.553
9.0 3.239 3.092 2931 2.792 2.663 2.525 2.472 2467 2.449
10.0 3.282 3.142 2986 2.812 2.640 2507 2367 2.350 2.349
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Classical GI/GI/1 Problem

We want to address a Long Standing Open Problem in
Queueing Theory.
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We want to address a Long Standing Open Problem in
Queueing Theory.

» Given any G, what is the extremal inter-arrival time
dist F* attaining the UB of E[W (F, G)]?
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Classical GI/GI/1 Problem

We want to address a Long Standing Open Problem in
Queueing Theory.
» Given any G, what is the extremal inter-arrival time
dist F* attaining the UB of E[W (F, G)]?

» Answer: three point dist F™*.
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We want to address a Long Standing Open Problem in
Queueing Theory.
» Given any G, what is the extremal inter-arrival time
dist F* attaining the UB of E[W (F, G)]?
» Answer: three point dist F™*.

» Given any F', what is the extremal service time dist G*
attaining the UB of E[W (F, G)]?
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dist F* attaining the UB of E[W (F, G)]?
» Answer: three point dist F™*.
» Given any F', what is the extremal service time dist G*
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Classical GI/GI/1 Problem

We want to address a Long Standing Open Problem in
Queueing Theory.
» Given any G, what is the extremal inter-arrival time
dist F* attaining the UB of E[W (F, G)]?
» Answer: three point dist F™*.
» Given any F', what is the extremal service time dist G*
attaining the UB of E[W (F, G)]?
» Answer: three point dist G*.

» What are the extremal F* and G* leading to overall UB
of E[W(F,G)|?
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Classical GI/GI/1 Problem

We want to address a Long Standing Open Problem in
Queueing Theory.
» Given any G, what is the extremal inter-arrival time
dist F* attaining the UB of E[W (F, G)]?
» Answer: three point dist F*.
» Given any F', what is the extremal service time dist G*
attaining the UB of E[W (F, G)]?
» Answer: three point dist G*.
» What are the extremal F* and G* leading to overall UB
of E[W(F,G)|?
» Answer: the pair Fy, G,.
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Impact of Inter-arrival Time

5205, M =30, M_=30 =05, M_=30, M_=30

£G000000 %

seessesstseeessesssetasscsssase

s 0

15 2 15 2
b, ffom 51030 b, ffom 51030

Figure: Simulation estimates of the transient mean E[Wog] (left) and
the steady-state mean E[W] (right) as a function of b, for six cases of
bs the in the case p = 0.5, ¢2 = ¢2 = 4.0 and M, = M, = 30.
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Impact of Service Time

=05, M =5, M_=100 =0.9,M =5, M =100

] o w0 10 o 10 2 s s 100

W0 s 0 w0 s e
b, from 510 100 b, from 510 100

Figure: E[W (Fy, Q)] for G € P, 22 as a function of by given
b, =(1+ cg)
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Counterexamples

Given any G € Ps 2, the extremal inter-arrival time is Fp.
Given any F' € Py, the extremal service time is Go, Gy,

=05, c2=4,c2=4 =05, ¢l=4, cl=4

S0RRRRRRNR0RR e S

5 52 54 56 58 6 62 64 665 68 7 5 10 15 20
b, from 5107 b, from 510 20

4N Yan Chen Extremal GI/GI/1 Queues 26 / 29



0000000000800 0

Counterexamples

Conjecture

Given any G € Ps 2, the extremal inter-arrival time is Fp.
Given any F' € Py, the extremal service time is Go, Gy,

=05, c2=4,c2=4 =05, ¢l=4, cl=4

5 52 54 56 58 6 62 64 665 68 7 5 10 15 20
b, from 5107 b, from 510 20

Figure: The E[W]: a function of b, in [(1 + ¢2), M, = 7] for bs = 5,
oo i€ for Go (left) and as a function of by in [(1 4 ¢2), My = 20] for b,
D (right).
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Conjectures

Theorem

(Counterezamples) Fiz any service time dist G, F*(G) = Fy;
Fiz any inter-arrival dist F', G*(F') is Go or Gy. The both
arguments are invalid.
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(Counterezamples) Fiz any service time dist G, F*(G) = Fy;
Fiz any inter-arrival dist F', G*(F') is Go or Gy. The both
arguments are invalid.

Conjecture

(Chen and Whitt I) Fiz any G, the extremal F*(G) is a
two-point distribution.
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Conjectures

Theorem

(Counterezamples) Fiz any service time dist G, F*(G) = Fy;
Fiz any inter-arrival dist F', G*(F') is Go or Gy. The both
arguments are invalid.

Conjecture

(Chen and Whitt I) Fiz any G, the extremal F*(G) is a
two-point distribution.

Conjecture

(Chen and Whitt II) Fiz any two-point F', the extremal G*(F)
s a two-point distribution.
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Upper Bound Inequality

Overall Upper Bound:

N
‘e

4N Yan Chen Extremal GI/GI/1 Queues 28 /29



0000000000000

Upper Bound Inequality

Overall Upper Bound:

EW(F,G)] < E[W(Fy,Guy)]
2(1 - p)p/(1 = §)c2 + pc}
2(1-p) '

IN

5 €(0,1) and 6 = exp(—(1—19)/p).
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Upper Bound Inequality

N
Yo

Overall Upper Bound:
EW(F,G)] < E[W(Fo,Gy)]

2(1 = p)p/(1 = d)ca + pc
2(1-p) '

<

5 €(0,1) and 6 = exp(—(1—19)/p).

Theorem

(an UB for E[W (Fy,Gy»)]) For the GI/GI/1 queue with
parameter four-tuple (1,c2, p, c2), if E[W (Fy, Gy+)] is UB, then

(1—6)c2 + pc?

2(1 - p)p/
E[W (Fp, Gy)] < 2(1— p)
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Thank You!
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