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Motivation

Motivation

I Queueing Network Analyzer in Whitt (1983).

I Evaluate Quality of Queueing Approximations.

I Propose Tight Upper & Lower Bounds for Queueing
Characteristics (Extremal Queueing Models).

Research Question: How to Explore Extremal Queues?
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Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

GI/GI/1 Model:

I unlimited waiting room and FCFS discipline.

I mean inter-arrival time and service time (m1 = 1, s1 = ρ).

I second moments m2 = (1 + c2a)m2
1, s2 = (1 + c2s)s

2
1.

I inter-arrival time U distributed as F over [0,Ma].

I service time V distributed as G over [0, ρMs].

Related Literature:

I Kingman (1962), Daley (1977), Ott(1987), Whitt (1984b),
Daley (1992), Wolff and Wang (2003).

I Bertsmimas and Natarajan (2007), Gupta and Osogami
(2011), Osogami and Raymond (2013).

Yan Chen Extremal GI/GI/1 Queues 3 / 29



Background

Basic Settings

I P2(M): cdf’s with support in the interval [0,mM ] given
mean m and second moment (c2 + 1)m2.

I P2,k(M): cdf’s with finite k support in P2(M).

I Steady-state Waiting Time:

W
d
= [W + V − U ]+,

with W0 = 0.

w : Pa,2(Ma)× Ps,2(Ms)→ R,

where 0 < ρ < 1 and

w(F,G) ≡ E[W (F,G)].
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Background

Background

I Pollaczek-Khintchine formula:

E[W (M,G)] =
τρ(1 + c2s)

2(1− ρ)
=
ρ2(1 + c2s)

2(1− ρ)
.

I Kingman (1962) bound:

E[W (F,G)] ≤ ρ2([c2a/ρ
2] + c2s)

2(1− ρ)
.

I Daley (1977) bound:

E[W (F,G)] ≤ ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
.
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Background

Objectives

We want to answer a Long Standing Open Problem in
Queueing Theory.

I Given any G, what is the extremal inter-arrival time
dist F ∗ attaining the UB of E[W (F,G)]?

I Given any F , what is the extremal service time dist G∗

attaining the UB of E[W (F,G)]?

I What are the extremal F ∗ and G∗ leading to overall UB of
E[W (F,G)]?
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Summary

Extremal Distributions

Two-point distributions (one parameter family):

I F ∈ Pa,2,2(Ma): c2a/(c
2
a + (ba − 1)2) at ba,

(ba − 1)2/(c2a + (ba − 1)2) at 1− c2a/(ba − 1)
where 1 + c2a ≤ ba ≤Ma.

I G ∈ Ps,2,2(Ms): c
2
s/(c

2
s + (bs − 1)2) at ρbs,

(bs − 1)2/(c2s + (bs − 1)2) at ρ(1− c2s/(bs − 1))
where 1 + c2s ≤ bs ≤Ms.

I F = F0 for ba = 1 + c2a and F = Fu when ba = Ma.

I G = G0 for bs = 1 + c2s and G = Gu when bs = Ms.
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Summary

Main Results for Extremal Queues

I (a) Given any parameter vector (1, c2a, ρ, c
2
s) over bounded

support [0,Ma] and [0, ρMs], the pair (F0, Gu) attains the
tight UB of the steady-state mean E[W (F,G)], while a pair
(F0, Gu,n) attains the tight UB of the transient mean
E[Wn(F,G)], where Gu,n is a two-point distribution with
Gu,n ⇒ Gu as n→∞.
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Summary

Main Results for Extremal Queues

I (b) For the unbounded interval of support [0,∞), the tight
UB of E[W ] is not attained directly, but is obtained
asymptotically in the limit as Ms →∞ in part (a).

I (c) The mean E[W (F0, Gu)] does not approach the mean in
the associated extremal F0/D/1 queue as Ms →∞, yet
approach to limMs→∞E[(W (F0, Gu)] (E[W (F0, Gu∗)]).
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Summary

Main Results for Upper Bound

Overall Upper Bound Inequalities:

E[W (F,G)] ≤ E[W (F0, Gu∗)](Tight UB)

≤ 2(1− ρ)ρ/(1− δ)c2a + ρ2c2s
2(1− ρ)

(UB Approx)

<
ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
(Daley(1977))

<
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
(Kingman(1962))

where δ ∈ (0, 1) and δ = exp(−(1− δ)/ρ).
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Summary

Main Results for Upper Bound

Table: A comparison of the bounds and approximations for the
steady-state mean E[W ] as a function of ρ for the case c2a = c2s = 4.0.

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
0.10 0.00 0.044 0.422 0.422 0.000 0.003% 0.44 2.24
0.20 0.00 0.200 0.904 0.906 0.007 0.19% 1.00 2.60
0.30 0.00 0.514 1.499 1.51 0.041 0.60% 1.71 3.11
0.40 0.00 1.07 2.304 2.33 0.107 0.94% 2.67 3.87
0.50 0.25 2.00 3.470 3.51 0.203 1.15% 4.00 5.00
0.60 1.00 3.60 5.295 5.35 0.324 1.07% 6.00 6.80
0.70 2.42 6.53 8.441 8.52 0.467 0.93% 9.33 9.93
0.80 5.50 12.80 14.92 15.02 0.629 0.67% 16.00 16.40
0.90 15.25 32.40 34.72 34.84 0.807 0.35% 36.00 36.20
0.95 35.13 72.20 74.62 74.76 0.902 0.18% 76.00 76.10
0.98 95.05 192.1 194.6 194.7 0.960 0.07% 196.0 196.0
0.99 195.0 392.0 394.5 394.7 0.980 0.04% 396.0 396.0
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Reduction to Three-point

Main Reduction Theorem

Theorem

(reduction to a three-point distribution) Consider the class of
GI/GI/1 queues with cdf F ∈ Pa,2 with cdf G ∈ Ps,2 where
0 < ρ < 1, the following suprema are attained as indicated:

(a) For any specified G ∈ Ps,2, there exists F ∗(G) ∈ Pa,2,3(Ma)
such that

w↑a(G) ≡ sup {w(F,G) : F ∈ Pa,2(Ma))}
= sup {w(F,G) : F ∈ Pa,2,3(Ma)} = w(F ∗(G), G).
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Reduction to Three-point

Main Reduction Theorem

Theorem

(continued)

(b) For any specified F ∈ Pa,2, there exists G∗(F ) ∈ Ps,2,3(Ms)
such that

w↑s(F ) ≡ sup {w(F,G) : G ∈ Ps,2(Ms)}
= sup {w(F,G) : G ∈ Ps,2,3(Ms)} = w(F,G∗(F )).

(c) There exists (F ∗∗, G∗∗) in Pa,2,3(Ma)× Ps,2,3(Ms) such that

w↑ ≡ sup {w(F,G) : F ∈ Pa,2, G ∈ Ps,2(Ms)}
= sup {w(F,G) : F ∈ Pa,2,3(Ma), G ∈ Ps,2,3(Ms)}
= w(F ∗∗, G∗∗) = w↑a(G∗∗) = w↑s(F ∗∗).
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Technical Proof

Ideas of Proof for Case (a)

I Start with W
d
= [W + VG − UF ]+.

I E[W ] = E[(W + V − U)+] =
∫Ma

0 φ(u)dF for φ expressed
as the double integral

φ(u) ≡
∫ ∞
0

∫ ∞
0

(x+ v − u)+ dG(v) dH(x), 0 ≤ u ≤Ma.

I Optimize over F : supF∈Pa,2(Ma)

∫Ma

0 φ(u)dF . It can be
written as

sup {E[(W + V − U)+] : FU ∈ Pa,2(Ma)}.

I Update W1 = (W + V − UF1)+. E[W1] ≥ E[W ]
I Repeat to obtain W2 = (W1 + V −UF2)+. E[W2] ≥ E[W1] ?
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Technical Proof

Ideas of Proof for Case (a)

I Suppose fixed point exists:

(W (F ∗, G) + V − UF ∗)+
d
= W (F ∗, G).

With the property

E[(W (F ∗, G) + V − UF ∗)+]

= sup {E[(W (F,G) + V − UF )+] : F ∈ Pa,2(Ma)}.

I Show F ∗ ∈ Pa,2,3(Ma).
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Reduction to Two-point

Relate to Transient Mean Waiting Time

Theorem

(reduction to the transient mean) Consider GI/GI/1 queues
given first two moments and bounded support,

(a) For any specified G ∈ Ps,2, if there exists Fn ∈ Pa,2,3(Ma)
such that

wn(Fn, G) = w↑a,n(G) ≡ sup {wn(F,G) : F ∈ Pa,2(Ma)},

then the sequence {Fn : n ≥ 1} is tight, so that there exists a
convergent subsequence. Moreover, if F is the limit of any
convergent subsequence, then F is in Pa,2,3(Ma) and F is
optimal for E[W (F,G)].
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Reduction to Two-point

Relate to Transient Mean Waiting Time

Theorem

(continued) (b) For any specified F ∈ Pa,2, if there exists

Gn ∈ Ps,2(Ma) such that

wn(F,Gn) = w↑s,n(F ) ≡ sup {wn(F,G) : G ∈ Ps,2(Ma)},

then the sequence {Gn : n ≥ 1} is tight, so that there exists a
convergent subsequence. Moreover, if G is the limit of any
convergent subsequence, then G is in Ps,2,3(Ms) and G is
optimal for E[W (F,G)].

(c) If there exists (Fn, Gn) in Pa,2,3(Ma)× Ps,2,3(Ms) such that

wn(Fn, Gn) = w↑n ≡ sup {wn(F,G) : F ∈ Pa,2(Ma), G ∈ Ps,2(Ms)},

then the sequence {(Fn, Gn) : n ≥ 1} is tight.
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Reduction to Two-point

The Multinomial Representation

In the bounded support three-point distribution space,

Pk(v,p) ≡ k!pk11 p
k2
2 p

k3
3

k1!k2!k3!
,

Qw(u,q) ≡ w!qw1
1 qw2

2 qw3
3

w1!w2!w3!
.

E[Wn] =

n∑
k=1

1

k

∑
(k,w)∈I

max {0,
3∑

i=1

(kivi − wjuj)}Pk(v,p)Qw(u,q).
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Reduction to Two-point

The Multinomial Representation

A tractable formulation for optimizing E[Wn]:

maximize
n∑

k=1

1

k

∑
∑

ki=k,
∑

wj=k

max(
∑
i

kivi −
∑
j

wjui, 0)P (k1, k2, k3)Q(w1, w2, w3)

subject to
3∑

j=1

vjpj =s1,
3∑

j=1

v2j pj =(1 + c2s)s
2
2,

3∑
j=1

ujqj =m1,
3∑

j=1

u2
jqj =(1 + c2a)m

2
1,

3∑
j=1

pj =
3∑

k=1

qk = 1,

Ms ≥ vj ≥ 0, Ma ≥ uj ≥ 0, pj ≥ 0, qj ≥ 0, 1 ≤ j ≤ 3.
(1)
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Reduction to Two-point

The Multinomial Representation

I all local optima in Pa,2,2 × Ps,2,2.
I E[W (F0, Gu,n)] is larger than for other local optima.
I Gu,n denote there is a optimal b∗s(n,Ms) (not necessary to

be equal to Ms).

Table: Numerical values of E[Wn(F0, Gu,n)] from the optimization
and numerical search for c2a = c2s = 4.0 for Ma = Ms = 10

n ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

1 0.080 0.160 0.240 0.320 0.400 0.489 0.579 0.668 0.758
5 0.269 0.538 0.813 1.095 1.414 1.777 2.140 2.505 2.882
10 0.357 0.716 1.102 1.525 2.056 2.634 3.228 3.869 4.555
15 0.386 0.778 1.220 1.744 2.410 3.137 3.949 4.832 5.776
20 0.395 0.804 1.281 1.871 2.626 3.508 4.499 5.602 6.808
25 0.399 0.814 1.313 1.948 2.781 3.782 4.933 6.242 7.693
30 0.400 0.820 1.332 1.999 2.896 3.992 5.291 6.794 8.508
35 0.400 0.822 1.343 2.032 2.979 4.163 5.590 7.270 9.185
40 0.400 0.824 1.349 2.056 3.040 4.299 5.846 7.696 9.858
45 0.400 0.824 1.354 2.072 3.088 4.411 6.067 8.075 10.423
50 0.400 0.825 1.356 2.084 3.126 4.505 6.260 8.421 11.002
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Reduction to Two-point

Numerics and Simulation Search over Pa,2,2 × Ps,2,2

Table: Numerical estimates of E[W20] as a function of ba and bs when
ρ = 0.5, c2a = c2s = 4.0 and Ma = 7 < Ms = 10.

bs\ba 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00

5.0 2.497 2.530 2.518 2.497 2.469 2.439 2.406 2.371 2.335
5.5 2.557 2.414 2.420 2.422 2.402 2.378 2.351 2.320 2.288
6.0 2.561 2.447 2.328 2.318 2.328 2.312 2.290 2.266 2.239
7.0 2.549 2.447 2.331 2.204 2.165 2.149 2.154 2.150 2.132
8.0 2.556 2.430 2.319 2.208 2.074 2.029 2.021 2.010 2.007
9.0 2.598 2.456 2.310 2.183 2.068 1.937 1.895 1.903 1.898
10.0 2.626 2.506 2.353 2.188 2.043 1.921 1.786 1.779 1.789
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Reduction to Two-point

Numerics and Simulation Search over Pa,2,2 × Ps,2,2

Table: Simulation estimates of E[W ] as a function of ba and bs when
ρ = 0.5, c2a = c2s = 4.0 and Ma = 7 < Ms = 10.

bs\ba 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.0

5.0 3.110 3.134 3.117 3.083 3.040 2.997 2.950 2.910 2.863
5.5 3.179 3.026 3.019 3.009 2.975 2.938 2.901 2.860 2.823
6.0 3.191 3.065 2.932 2.907 2.905 2.876 2.844 2.809 2.767
7.0 3.181 3.067 2.942 2.797 2.748 2.720 2.713 2.691 2.670
8.0 3.195 3.056 2.934 2.810 2.664 2.611 2.591 2.564 2.553
9.0 3.239 3.092 2.931 2.792 2.663 2.525 2.472 2.467 2.449
10.0 3.282 3.142 2.986 2.812 2.640 2.507 2.367 2.350 2.349
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Reduction to Two-point

Classical GI/GI/1 Problem

We want to address a Long Standing Open Problem in
Queueing Theory.

I Given any G, what is the extremal inter-arrival time
dist F ∗ attaining the UB of E[W (F,G)]?

I Answer: three point dist F ∗.

I Given any F , what is the extremal service time dist G∗

attaining the UB of E[W (F,G)]?
I Answer: three point dist G∗.

I What are the extremal F ∗ and G∗ leading to overall UB
of E[W (F,G)]?

I Answer: the pair F0, Gu.
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Reduction to Two-point

Impact of Inter-arrival Time

5 10 15 20 25 30

b
a
 from 5 to 30

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

E
W

2
0

ρ=0.5, M
a
=30, M

s
=30

b
s
=5

b
s
=10

b
s
=15

b
s
=20

b
s
=25

b
s
=30

5 10 15 20 25 30

b
a
 from 5 to 30

1

1.5

2

2.5

3

3.5

E
W

ρ=0.5, M
a
=30, M

s
=30

b
s
=5

b
s
=10

b
s
=15

b
s
=20

b
s
=25

b
s
=30

Figure: Simulation estimates of the transient mean E[W20] (left) and
the steady-state mean E[W ] (right) as a function of ba for six cases of
bs the in the case ρ = 0.5, c2a = c2s = 4.0 and Ma = Ms = 30.
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Reduction to Two-point

Impact of Service Time
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Figure: E[W (F0, G)] for G ∈ Ps,2,2 as a function of bs given
ba = (1 + c2a).
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Reduction to Two-point

Counterexamples

Conjecture

Given any G ∈ Ps,2, the extremal inter-arrival time is F0.
Given any F ∈ Pa,2, the extremal service time is G0, Gu.
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Figure: The E[W ]: a function of ba in [(1 + c2a),Ma = 7] for bs = 5,
i.e., for G0 (left) and as a function of bs in [(1 + c2s),Ms = 20] for ba
(right).
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Reduction to Two-point

Counterexamples
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Reduction to Two-point

Conjectures

Theorem

(Counterexamples) Fix any service time dist G, F ∗(G) = F0;
Fix any inter-arrival dist F , G∗(F ) is G0 or Gu. The both
arguments are invalid.

Conjecture

(Chen and Whitt I) Fix any G, the extremal F ∗(G) is a
two-point distribution.

Conjecture

(Chen and Whitt II) Fix any two-point F , the extremal G∗(F )
is a two-point distribution.
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Reduction to Two-point

Upper Bound Inequality

Overall Upper Bound:

E[W (F,G)] ≤ E[W (F0, Gu∗)]

≤ 2(1− ρ)ρ/(1− δ)c2a + ρ2c2s
2(1− ρ)

.

δ ∈ (0, 1) and δ = exp(−(1− δ)/ρ).

Theorem

(an UB for E[W (F0, Gu∗)]) For the GI/GI/1 queue with
parameter four-tuple (1, c2a, ρ, c

2
s), if E[W (F0, Gu∗)] is UB, then

E[W (F0, Gu∗)] ≤ 2(1− ρ)ρ/(1− δ)c2a + ρ2c2s
2(1− ρ)

.
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Reduction to Two-point

Thank You!
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