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Related Work

* Heavy-Traffic Regime:

* A Closed Network with a Discriminatory Processor-
Sharing Server [Mitra & Weiss, 1989]

dx (t) Akgkwkxk (t)
P = Ai(br — x()) — K, (0)

* Moderately Heavy-Traffic Regime:

* Asymptotic analysis of a large closed queueing network

with discriminatory processor sharing [Morrison, 1991]
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Imperial College

Model Definition

M: Number of stations 9P : Set of delay stations
K: Number of classes @: Set of queueing stations

N: Total population of jobs

station j

Reference Model
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Model Definition

Service Time
Distribution

* Probability that a class-k job in phase r in station i proceeds
to station j as a class-[ job in phase s:

NPikars) T BikrParyin ks iti=jk=1
P(i,k,r),(j,l,s) —

Bik+P i) % Lr otherwise
where
Bixr =1-— ZlePlk(TS)
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Fluid Approximation

* Standard Markovian Technique: State space explosion
* Fluid Approximation: Discontinuity of the ODE system

* Preload a self-looping job into every queueing station:

Arrival ——5—> O—:—» Departure

------------------

Self-Looping

* Assign the self-looping job in each queueing station i a
service weight:
K
W _Zk=1Wi,k
L,0 K




Fluid Approximation

* Constraints on the service weight of the self-looping job:
Wi,O >0 ifvk e N;K' Wi,k >0
Wi,O =qa ifVkE€ N;K' Wi,k =da

where a € R, is arbitrary

* Assume the model to be a multi-chain QN, where no
transient classes would possibly exist
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Fluid Approximation

e State of the model:
R;j,
n(t) = (nye, (1) € {n e NF+ M, 5K 500, . = N}
where

R = Z 121{ 1le

* Set of possible state changes in the model:
L

B {_ei,k,r tejs il ENgy kL € Ng; 7 € Neg, 58
€ N;RH}

where e; ;- is a vector of all zeros except for a one in the
(i, k,r)-th entry and e; 1 s is similarly defined
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Fluid Approximation

* Transition rate of the model:
Ann+l = f(n» l)
where f : RR x Z® - R, is a function defined by

rMi,k,rp (i,k,r),(j,Ls)Xik,r iflelLi€e D
MW kX k, _ _
Flx, ) = { BikrPakm,iLs) l ;, e 1 iflel,i€@
’ K ik!
Zk’=1]/vl',k’ (Zr’=1xi,k’,1" + F)
0 otherwise

* The function f(x,1) is continuous, bounded and Lipschitz
continuous on any non-empty compact and convex subset of
its global domain

R. .1

D={xeRR:Vie gy _wy (T x4 +1/K) # 0]

r’'=1
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Fluid Approximation

Lemma 1. Let {n[”] (t):vE N*} be the sample paths of an
infinite sequence of QN models whose v-th element is the
original model scaled with a total population of vN jobs as
well as vm; servers and v self-looping jobs in each queueing
station i. The sequence {n[”](t) t VU E N*} consistutes a
density-dependent family of CTMCs.



Imperial College

Fluid Approximation

Lemma 2. Define a vector field F : RF — RE by
F(x) =2 lf(x, D)
Specifically,
Fi,k,r(x)
R,

— ZﬂW=12{<=1ZS=1 (f(xl _ej,l,S + ei,k,T‘)

_ f(x» —Cikr + ej,l,s))
The initial value problem (IVP)

(
d

1T = Fe©)
kx(O) =n(0)

has a unique solution x(t) in any finite time horizon T.
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Fluid Approximation

Theorem 1. Given the same initial state
n[”](O)
v

the normalized sequence {n["](t)/v IV E N*} converges to
the solution x(t) to the IVP

=n(0)

;
dx(t)
] ——= F(x(t))
x(0) = n(0)
in the sense that
nll(t)
lim P| sup —x(®)|| >6)=0 ford €R,,
V=00 te[0,T] U 1
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Fluid Approximation

Corollary 1. Suppose that the condition of Theorem 1 is
satisfied. The expectation of the normalized sequence

{n[”] (t)/v:v€E N*} converges to the solution x(t) to the IVP

d
1T = Feo)
\x(O) =n(0)

in any finite time horizon T':

(n[”] (t)

lim E

V—>00

) =x(t) fort € [0,T]
v
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Steady-State Validation

* Alarge set of 4914 model instances was obtained by setting

* Topology: serial, parallel

Service time distribution: exponential (insensitive to
phase-type distributions)

Number of stations: M = 3,5, 9 (including a delay station)
Number of classes: K = 2,4, 8

Total population of jobs: N = 128,256,512 (N, = N/K
without class switching)

Service rates: balanced, unbalanced (randomly generated
with 30 seeds)

Service weights: balanced, unbalanced (randomly
generated with 30 seeds)
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Steady-State Validation

* The proposed approach was compared with an AMVA
algorithm for DPS presented in Quantitative System
Performance - Computer System Analysis Using Queueing
Network Models [Lazowska et al., 1984]:

(D; ifi € @

K

—1W;Q; (N —e
D; i (1 + 2i=1Wia Qi k)) otherwise
\ Wik

* The results were evaluated against discrete-event simulation
using a tolerance metric found in Linearizer - A Heuristic
Algorithm for Queueing Network Models of Computing
Systems [Chandy & Neuse, 1982]:

Rk (N) = <

C R
|Qi,k — Qi,kl
Tolerance = max
(ENEpNpkENE K Ny
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Average Tolerance
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Transient Validation

* 4 typical model instances were obtained by setting
* Topology: serial, parallel

* Service time distribution: exponential, 2-phase coxian
with a CV of 2 (sensitive to phase-type distributions)

* Number of stations: M = 5 (including a delay station)
* Number of classes: K = 4

* Total population of jobs: N = 256 (N, = N/K without
class switching)

* Service rates: unbalanced (randomly generated with 1
seed)

 Service weights: unbalanced (randomly generated with 1
seed)
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(a) Serial -
Exponential

(c) Parallel -
Exponential
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Mean Number of Jobs

Mean Number of Jobs

Transient Validation

Q21
Q22
Qs
Q24
0 . . . . . . .
0 200 400 600 800 1000 1200 1400
Time
14 -
[ o———
| MMW
12
10
e A, i
- B s e SN,
B [ e e e o
6
4l
Q21
2+ Q22
Qs
Q24
0 . . . . .
0 200 400 600 800 1000

Time

Fluid Approximation of Closed Queueing Networks with

Mean Number of Jobs

Mean Number of Jobs

w
(4]
1

w
o
T

N
o

N
o

o
(&

=
o

Q21
Qg
Qa3
Q24

(b) Serial -
Coxian

800 1000 1200 1400

600
Time

(c) Parallel -
Coxian

Q21

Qa3
@24

200 400 600 800 1000
Time

19

Discriminatory Processor Sharing



Imperial College

Applications

* Dynamic Analysis of Random Environments:

* Blending randomness in closed queueing network models
[Casale, Tribastone & Harrison, 2014]

* Approximation of Response Time Distributions:

* LINE: Evaluating Software Applications in Unreliable
Environments [Casale, Tribastone & Harrison, 2014]

* Not accurate for non-exponential service times

* Not applicable at the system level
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Concept of Chains

* The routing probability matrix |P(; 1) (j.n] € RM€*MK can be
considered as defining a DTMC whose state is a station-class
pair (i, k)

* For a multi-chain QN, the routing DTMC is assumed to be
decomposable into ergodic subchains

* |f we represent the routing DTMC as a weighted direct graph,
then each chain manifests itself as a strongly connected
subgraph

* Because all the chains are completely isolated from one
another, it is impossible for a job to switch between different
chains
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Response Time CDF

U, Set of station-class pairs in chain q

&g+ Set of routes connecting station-class pairs in chain g

Population of jobs in chain g:
Rk

Ng = Zne ‘qur=1ni,k,r

Set of classes that may be visited a chain-g job at station i:
Gq =1{k: (i, k)€ U}

Set of classes that are visited by chain-g jobs across all the
stations:

@1 — Ulivi1 @,q
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Response Time CDF

* Evaluate the mean service time §;;, of a class-k job at
station i by applying the moment formula for phase-type
distributions

* Modify the service time distribution of class k at station i so
that any class-k arrival at the station starts in an additional
phase 0 with probability a;,¢ =1 and shifts from that
phase to phase r with probability P; ; (07) = @ kr

* Phase (i, k, 0) therefore gathers up all class-k jobs having
just arrived at station i

* To limit the side effects of the modification, the service
rate of phase (i,k,0) to u;r, = 1/1S5;x, where 7 is a
small positive constant
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Response Time CDF

* Build a fluid ODE system that incorporates the modified
service time distribution, and compute its steady-state

solution ¥ € RR' under the initial condition x'(0) € RR’,
whereR"' =R + 1

* The initial condition x'(0) derives from the given initial
condition x(0) by inserting zero entries

* Create an auxiliary class k' for tagging class-k jobs

* Class k' has the same service time distribution and the
same service weight as class k at station i

* The probability of a class-k’ job at station i being routed
to station j as a class-L job is setas P(; i) (j 1y = Pik), (i)

* A tagged class-k job is thereby restored immediately
after departurefrom'station i
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Response Time CDF

* Build another fluid ODE system that incorporates the
auxiliary class, and compute its transient solution x'"'(t) €

II

RR" under the initial condition x”’(0) € RR", where R" =
R+Riy+?2

* The initial condition x''(0) arises from the resultant
steady-state solution X' by inserting zero entries except
that x; ,(0) = 0 and xlk 1o(0) = X ko

* Response time CDF of class k at station i:
R. ./
IEHWNG
lk’ (0)

lk(t) ~1-—
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System Response Time CDF

 Add an end phase in the service time distribution of each
class k in the set (3, at station D to tag chain-q jobs that

are about to depart from the reference station and restore
them upon next arrival.

* System response time CDF of chain g with respect to station

D:
D, 1 (1)
r lk’
1 ZkEC‘bq Dk’ R +1(t) + Z(l k)e“U l-'#DZ lk"l"(t)

Zke B.a* D'k"RD,k""l (0)
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A Simple Example

D I T

station 2
station 1 Population 5 5
Think time
distributions 202 Exp(0.5)
Topology Service time HyperExp Coxian
distributions ([0.5,0.5],[0.2,1.0]) ([0.7,1.0],[0.5,0.1])
Servme 10 2.0
weights
Routin 0.0, 0.0, 0.6, 0.4]
o ab”’?t 0.0,0.0,0.4,0.6
P e Y 1.0,0.0, 0.0, 0.0
Matrix 0.0,1.0,0.0, 0.0,
Routing CTMC Parameters

Fluid Approximation of Closed Queueing Networks with
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A Simple Example

For Response Time CDF of Class 1 at Queueing Station

Before After

1.0

1.0

For System Response Time CDF with Respect to Delay Station
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A Simple Example
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Conclusion

A fluid approach is proposed for approximating the transient
and steady-state behavior of closed QNs with DPS

Our reference model is defined generically, featuring

* Arbitrary topology
* Phase-type service times

* Class switching

The proposed approach has been verified against discrete-
event simulation for both transient and steady-state analysis

A refined method and its extension are introduced for
approximating response time distributions at the station and
system levels
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