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DPS Discipline

DPS Queueing System

Instantaneous fraction of the
service capacity allotted to a
class-𝑘 job:

𝑤𝑘

∑𝑙=1
𝐾 𝑤𝑙𝑛𝑙 𝑡
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Related Work

• Heavy-Traffic Regime:

• A Closed Network with a Discriminatory Processor-
Sharing Server [Mitra & Weiss, 1989]

𝑑𝑥𝑘 𝑡

𝑑𝑡
= 𝜆𝑘 𝑏𝑘 − 𝑥𝑘 𝑡 −

𝜆𝑘𝑔𝑘𝑤𝑘𝑥𝑘 𝑡

∑𝑙=1
𝐾 𝑤𝑙𝑥𝑙 𝑡

• Moderately Heavy-Traffic Regime:

• Asymptotic analysis of a large closed queueing network
with discriminatory processor sharing [Morrison, 1991]

∑𝑙=1
𝐾 𝑏𝑘

𝑔𝑘
= 1 −

𝑎

𝑁

where 𝑎 = 𝑂 1 as 𝑁 → ∞
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Model Definition

𝑀: Number of stations D : Set of delay stations

𝐾: Number of classes Q : Set of queueing stations

𝑁: Total population of jobs

Reference Model
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Model Definition

• Probability that a class-𝑘 job in phase 𝑟 in station 𝑖 proceeds
to station 𝑗 as a class-𝑙 job in phase 𝑠:

𝑃 𝑖,𝑘,𝑟 ,(𝑗,𝑙,𝑠) = ൝
𝑃𝑖,𝑘, 𝑟,𝑠 + 𝛽𝑖,𝑘,𝑟𝑃 𝑖,𝑘 𝑖,𝑘 α𝑖,𝑘,𝑠 if 𝑖 = 𝑗, 𝑘 = 𝑙

𝛽𝑖,𝑘,𝑟𝑃 𝑖,𝑘 , 𝑗,𝑙 α𝑗,𝑙,𝑟 otherwise

where

𝛽𝑖,𝑘,𝑟 = 1 − ∑𝑠=1

𝑅𝑖,𝑘𝑃𝑖,𝑘, 𝑟,𝑠

Service Time 
Distribution
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Fluid Approximation

• Standard Markovian Technique: State space explosion

• Fluid Approximation: Discontinuity of the ODE system

• Preload a self-looping job into every queueing station:

• Assign the self-looping job in each queueing station 𝑖 a
service weight:

𝑤𝑖,0 =
∑𝑘=1
𝐾 𝑤𝑖,𝑘

𝐾



04/12/2018
Fluid Approximation of Closed Queueing Networks with 

Discriminatory Processor Sharing
7

Fluid Approximation

• Constraints on the service weight of the self-looping job:

൝
𝑤𝑖,0 ≥ 0 if ∀𝑘 ∈ ≤𝐾

∗ , 𝑤𝑖,𝑘 ≥ 0

𝑤𝑖,0 = 𝑎 if ∀𝑘 ∈ ≤𝐾
∗ , 𝑤𝑖,𝑘 = 𝑎

where 𝑎 ∈ ≥0 is arbitrary

• Assume the model to be a multi-chain QN, where no
transient classes would possibly exist
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Fluid Approximation

• State of the model:

𝒏 𝑡 = 𝑛𝑖,𝑘,𝑟 𝑡 ∈ 𝒏 ∈ 𝑅 ∶ ∑𝑖=1
𝑀 ∑𝑘=1

𝐾 ∑𝑟=1

𝑅𝑖,𝑘 𝑛𝑖,𝑘,𝑟 = 𝑁

where

𝑅 = ∑𝑖=1
𝑀 ∑𝑘=1

𝐾 𝑅𝑖,𝑘

• Set of possible state changes in the model:
𝐿

= ቄ

ቅ

−𝒆𝑖,𝑘,𝑟 + 𝒆𝑗,𝑙,𝑠 ∶ 𝑖, 𝑗 ∈ ≤𝑀
∗ ; 𝑘, 𝑙 ∈ ≤𝐾

∗ ; 𝑟 ∈ ≤𝑅𝑖,𝑘
∗ ; 𝑠

∈ ≤𝑅𝑗,𝑙
∗

where 𝒆𝑖,𝑘,𝑟 is a vector of all zeros except for a one in the

𝑖, 𝑘, 𝑟 -th entry and 𝒆𝑗,𝑙,𝑠 is similarly defined
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Fluid Approximation

• Transition rate of the model:
𝑞𝒏,𝒏+𝒍 = 𝑓 𝒏, 𝒍

where 𝑓 ∶ 𝑅 × 𝑅 → ≥0 is a function defined by

𝑓 𝒙, 𝒍 =

𝜇𝑖,𝑘,𝑟𝑃 𝑖,𝑘,𝑟 , 𝑗,𝑙,𝑠 𝑥𝑖,𝑘,𝑟 if 𝒍 ∈ 𝐿, 𝑖 ∈ D

𝜇𝑖,𝑘,𝑟𝑃 𝑖,𝑘,𝑟 , 𝑗,𝑙,𝑠

𝑚𝑖𝑤𝑖,𝑘𝑥𝑖,𝑘,𝑟

∑𝑘′=1
𝐾 𝑤𝑖,𝑘′ ∑

𝑟′=1

𝑅𝑖,𝑘′ 𝑥𝑖,𝑘′,𝑟′ +
1
𝐾

if 𝒍 ∈ 𝐿, 𝑖 ∈ Q

0 otherwise

• The function 𝑓 𝒙, 𝒍 is continuous, bounded and Lipschitz
continuous on any non-empty compact and convex subset of
its global domain

𝐷 = 𝒙 ∈ 𝑅 ∶ ∀𝑖 ∈ Q, ∑𝑘′=1
𝐾 𝑤𝑖,𝑘′ ∑

𝑟′=1

𝑅
𝑖,𝑘′ 𝑥𝑖,𝑘′,𝑟′ + 1/𝐾 ≠ 0
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Fluid Approximation

Lemma 1. Let 𝒏[𝒗] 𝑡 ∶ 𝑣 ∈ be the sample paths of an

infinite sequence of QN models whose 𝑣-th element is the
original model scaled with a total population of 𝑣𝑁 jobs as
well as 𝑣𝑚𝑖 servers and 𝑣 self-looping jobs in each queueing

station 𝑖 . The sequence 𝒏[𝒗] 𝑡 ∶ 𝑣 ∈ consistutes a

density-dependent family of CTMCs.
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Fluid Approximation

Lemma 2. Define a vector field 𝑭 ∶ 𝑅 → 𝑅 by
𝑭 𝒙 = ∑𝒍𝒍𝑓 𝒙, 𝒍

Specifically,
𝐹𝑖,𝑘,𝑟 𝒙

= ∑𝑗=1
𝑀 ∑𝑙=1

𝐾 ∑𝑠=1

𝑅𝑗,𝑙
ቀ

ቁ

𝑓 𝒙,−𝒆𝑗,𝑙,𝑠 + 𝒆𝑖,𝑘,𝑟

− 𝑓 𝒙,−𝒆𝑖,𝑘,𝑟 + 𝒆𝑗,𝑙,𝑠

The initial value problem (IVP)

൞
𝑑𝒙 𝑡

𝑑𝑡
= 𝑭 𝒙 𝑡

𝒙 0 = 𝒏 0

has a unique solution 𝒙 𝑡 in any finite time horizon T.
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Fluid Approximation

Theorem 1. Given the same initial state

𝒏 𝑣 0

𝑣
= 𝒏 0

the normalized sequence 𝒏[𝒗] 𝑡 /𝑣 ∶ 𝑣 ∈ converges to

the solution 𝒙 𝑡 to the IVP

൞

𝑑𝒙 𝑡

𝑑𝑡
= 𝑭 𝒙 𝑡

𝒙 0 = 𝒏 0

in the sense that

lim
𝑣→∞

sup
𝑡∈[0,𝑇]

𝒏[𝒗] 𝑡

𝑣
− 𝒙 𝑡

1

> 𝛿 = 0 for 𝛿 ∈ >0
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Fluid Approximation

Corollary 1. Suppose that the condition of Theorem 1 is
satisfied. The expectation of the normalized sequence

𝒏[𝒗] 𝑡 /𝑣 ∶ 𝑣 ∈ converges to the solution 𝒙 𝑡 to the IVP

൞
𝑑𝒙 𝑡

𝑑𝑡
= 𝑭 𝒙 𝑡

𝒙 0 = 𝒏 0

in any finite time horizon 𝑇:

lim
𝑣→∞

𝒏 𝒗 𝑡

𝑣
= 𝒙 𝑡 for 𝑡 ∈ 0, 𝑇



04/12/2018
Fluid Approximation of Closed Queueing Networks with 

Discriminatory Processor Sharing
14

Steady-State Validation

• A large set of 4914 model instances was obtained by setting

• Topology: serial, parallel

• Service time distribution: exponential (insensitive to
phase-type distributions)

• Number of stations: 𝑀 = 3, 5, 9 (including a delay station)

• Number of classes: 𝐾 = 2, 4, 8

• Total population of jobs: 𝑁 = 128, 256, 512 (𝑁𝑘 = 𝑁/𝐾
without class switching)

• Service rates: balanced, unbalanced (randomly generated
with 30 seeds)

• Service weights: balanced, unbalanced (randomly
generated with 30 seeds)
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Steady-State Validation

• The proposed approach was compared with an AMVA
algorithm for DPS presented in Quantitative System
Performance - Computer System Analysis Using Queueing
Network Models [Lazowska et al., 1984]:

𝑅𝑖,𝑘 𝑵 ≈ ൞

𝐷𝑖,𝑘 if 𝑖 ∈ Q

𝐷𝑖,𝑘 1 +
∑𝑙=1
𝐾 𝑤𝑖,𝑙𝑄𝑖,𝑙 𝑵− 𝒆𝑘

𝑤𝑖,𝑘
otherwise

• The results were evaluated against discrete-event simulation
using a tolerance metric found in Linearizer - A Heuristic
Algorithm for Queueing Network Models of Computing
Systems [Chandy & Neuse, 1982]:

Tolerance = max
𝑖∈ ≤𝑀

∗ ,𝑘∈ ≤𝐾
∗

𝑄𝑖,𝑘
C − 𝑄𝑖,𝑘

R

𝑁𝑘
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Steady-State Validation
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Transient Validation

• 4 typical model instances were obtained by setting

• Topology: serial, parallel

• Service time distribution: exponential, 2-phase coxian
with a CV of 2 (sensitive to phase-type distributions)

• Number of stations: 𝑀 = 5 (including a delay station)

• Number of classes: 𝐾 = 4

• Total population of jobs: 𝑁 = 256 (𝑁𝑘 = 𝑁/𝐾 without
class switching)

• Service rates: unbalanced (randomly generated with 1
seed)

• Service weights: unbalanced (randomly generated with 1
seed)
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Transient Validation

(a) Serial (b) Parallel



04/12/2018
Fluid Approximation of Closed Queueing Networks with 

Discriminatory Processor Sharing
19

Transient Validation

(a) Serial -
Exponential

(b) Serial -
Coxian

(c) Parallel -
Exponential

(c) Parallel -
Coxian
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Applications

• Dynamic Analysis of Random Environments:

• Blending randomness in closed queueing network models
[Casale, Tribastone & Harrison, 2014]

• Approximation of Response Time Distributions:

• LINE: Evaluating Software Applications in Unreliable
Environments [Casale, Tribastone & Harrison, 2014]

• Not accurate for non-exponential service times

• Not applicable at the system level
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Concept of Chains

• The routing probability matrix 𝑃 𝑖,𝑘 , 𝑗,𝑙 ∈ 𝑀𝐾×𝑀𝐾 can be

considered as defining a DTMC whose state is a station-class
pair 𝑖, 𝑘

• For a multi-chain QN, the routing DTMC is assumed to be
decomposable into ergodic subchains

• If we represent the routing DTMC as a weighted direct graph,
then each chain manifests itself as a strongly connected
subgraph

• Because all the chains are completely isolated from one
another, it is impossible for a job to switch between different
chains
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Response Time CDF

• V𝑞: Set of station-class pairs in chain 𝑞

• E𝑞: Set of routes connecting station-class pairs in chain 𝑞

• Population of jobs in chain 𝑞:

𝑁𝑞
∗ = ∑ 𝑖,𝑘 ∈V𝑞

∑𝑟=1

𝑅𝑖,𝑘 𝑛𝑖,𝑘,𝑟

• Set of classes that may be visited a chain-𝑞 job at station 𝑖:

C𝑖,𝑞 = 𝑘 ∶ 𝑖, 𝑘 ∈ V𝑞

• Set of classes that are visited by chain-𝑞 jobs across all the
stations:

C𝑞 = ⋃𝑖=1
𝑀 C𝑖,𝑞
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Response Time CDF

• Evaluate the mean service time S𝑖,𝑘 of a class-𝑘 job at
station 𝑖 by applying the moment formula for phase-type
distributions

• Modify the service time distribution of class 𝑘 at station 𝑖 so
that any class-𝑘 arrival at the station starts in an additional
phase 0 with probability α𝑖,𝑘,0 = 1 and shifts from that
phase to phase 𝑟 with probability 𝑃𝑖,𝑘, 0,𝑟 = α𝑖,𝑘,𝑟

• Phase 𝑖, 𝑘, 0 therefore gathers up all class-𝑘 jobs having
just arrived at station 𝑖

• To limit the side effects of the modification, the service
rate of phase 𝑖, 𝑘, 0 to 𝜇𝑖,𝑘,𝑟 = 1/𝜂S𝑖,𝑘 , where 𝜂 is a
small positive constant
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Response Time CDF

• Build a fluid ODE system that incorporates the modified
service time distribution, and compute its steady-state

solution 𝒙′ ∈ 𝑅′ under the initial condition 𝒙′ 0 ∈ 𝑅′,
where 𝑅′ = 𝑅 + 1

• The initial condition 𝒙′ 0 derives from the given initial
condition 𝒙 0 by inserting zero entries

• Create an auxiliary class 𝑘′ for tagging class-𝑘 jobs

• Class 𝑘′ has the same service time distribution and the
same service weight as class 𝑘 at station 𝑖

• The probability of a class-𝑘′ job at station 𝑖 being routed
to station 𝑗 as a class-𝑙 job is set as 𝑃 𝑖,𝑘′ , 𝑗,𝑙 = 𝑃 𝑖,𝑘 , 𝑗,𝑙

• A tagged class-𝑘 job is thereby restored immediately
after departure from station 𝑖
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Response Time CDF

• Build another fluid ODE system that incorporates the
auxiliary class, and compute its transient solution 𝒙′′ 𝑡 ∈
𝑅′′ under the initial condition 𝒙′′ 0 ∈ 𝑅′′, where 𝑅′′ =

𝑅 + 𝑅𝑖,𝑘 + 2

• The initial condition 𝒙′′ 0 arises from the resultant
steady-state solution 𝒙′ by inserting zero entries except
that 𝑥𝑖,𝑘,0

′′ 0 = 0 and 𝑥𝑖,𝑘′,0
′′ 0 = 𝑥𝑖,𝑘,0

′

• Response time CDF of class 𝑘 at station 𝑖:

Φ𝑖,𝑘 𝑡 ≈ 1 −
∑𝑟=0

𝑅
𝑖,𝑘′𝑥𝑖,𝑘′,0

′′ 𝑡

𝑥𝑖,𝑘′,0
′′ 0
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System Response Time CDF

• Add an end phase in the service time distribution of each
class 𝑘 in the set C𝐷,𝑞 at station 𝐷 to tag chain-𝑞 jobs that

are about to depart from the reference station and restore
them upon next arrival.

• System response time CDF of chain 𝑞 with respect to station
𝐷:
Φ𝑖,𝑘 𝑡

≈ 1 −
∑𝑘∈C𝐷,𝑞𝑥𝐷,𝑘′,𝑅𝐷,𝑘′+1

′′ 𝑡 + ∑ 𝑖,𝑘 ∈V𝑞, 𝑖≠𝐷
∑𝑟=1

𝑅
𝑖,𝑘′𝑥𝑖,𝑘′,𝑟

′′ 𝑡

∑𝑘∈C𝐷,𝑞𝑥𝐷,𝑘′,𝑅𝐷,𝑘′+1
′′ 0
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A Simple Example

Topology

Class 1 Class 2

Population 5 5

Think time 
distributions

𝐸𝑥𝑝 0.2 𝐸𝑥𝑝 0.5

Service time 
distributions

𝐻𝑦𝑝𝑒𝑟𝐸𝑥𝑝
0.5, 0.5 , 0.2, 1.0

𝐶𝑜𝑥𝑖𝑎𝑛
0.7, 1.0 , 0.5, 0.1

Service 
weights

1.0 2.0

Routing 
probability

matrix

0.0, 0.0, 0.6, 0.4
0.0, 0.0, 0.4, 0.6
1.0, 0.0, 0.0, 0.0
0.0, 1.0, 0.0, 0.0

ParametersRouting CTMC
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A Simple Example

For Response Time CDF of Class 1 at Queueing Station 

Service Time Distribution Routing CTMC

For System Response Time CDF with Respect to Delay Station
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A Simple Example

Response Time CDF of 
Class 1 at Queueing

Station

System Response Time 
CDF with Respect to 

Delay Station
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Conclusion

• A fluid approach is proposed for approximating the transient
and steady-state behavior of closed QNs with DPS

• Our reference model is defined generically, featuring

• Arbitrary topology

• Phase-type service times

• Class switching

• The proposed approach has been verified against discrete-
event simulation for both transient and steady-state analysis

• A refined method and its extension are introduced for
approximating response time distributions at the station and
system levels



Thank you!


