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Introduction

JQueues with vacations are important class of queues, useful to describe and

analyze: computer systems, communication networks etc.

A vacation, in queueing context, is the period when the server does not

attending to a particularly targeted queue
dThe vacation starts only when the system becomes empty

dServer can return from vacation only when at least one customer in the

system



Introduction - continue

Since work of Levy and Yechiali: about vacation queues, researchers have

studied vacations queueing systems with extensions:

JWorking (utilized) vacation policy (Y. Levy)
JAbandonments during vacation (U. Yechiali)

dSynchronize reneging (l. Adan)



Introduction — decomposition result

JFor each of these examples, authors provide decomposition results for the

steady states probabilities of the number of customers in the system



Introduction — decomposition result

JDecomposition result: the steady state distribution (s.s.d.) of the number of

customers in the system is a convolution of:

d The s.s.d. of the number of customers in the corresponding system without

vacation

J The number of customers in vacation

“Understanding this decomposition is helpful to analyze some complex models”

B.T. Doshi Queuing systems with vacations - a survey



Our Results

1 Decomposition results: for the broad class of vacation systems:

dMAX/G/1 queueing system with general vacation policies

dMAX/M/1 queueing system with general vacations policies

JAnalysis of vacation models with balking impatience customers with rational

rates



M?*/G/1 - Decomposition Result



Model Definition

AMX/G/1 queue with general vacation
JCompound Poisson arrivals during working phase
JAs soon as the system becomes empty, the server goes on vacation
(JDuring vacations:

d customers may: arrive, balk, renege, leave alone or in group due to

disaster etc.
dThe server can serve vacation queue in any way: in group, in one, etc.

JAt the end of vacation the customers can: leave in group, born new

generation, etc.



Model Assumptions

Existence of stationary distribution of W - the number of customers in the

system at the end of vacation epoch

At the end of vacation the server restarts the service of the customers



General description: M*/M/1 Model

MX/M/1 system with states 1,2,3,...
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Example: M*/M/1 system with impatient
customers during vacation - reneging and
balking

Server is on .
vacation




Example: Impatient Customers During
Vacation - reneging
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Analysis of customers’ impatience in queues with server vacations

Eitan Altman - Uri Yechiali
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Decomposition Theorem — notations:

I Notation:
L the number of the customers in the system
1J the phase of the system: J=0 vacation phase, J=1 working phase

Elnn’J:P(L:n,J:j) - the system s.s.d. for n=j,2,3,..., j=0,1

Q G,(2)=) 7,,2' ,G(2)=) =,,z! partial probability generating functions pgf.
i=0 i=1
d ¥ the number of customers in the system at the end of vacation epoch

aG,(2)=2.9:2'- the probability generating function of the arrival group size
=1



Decomposition Theorem M*/G/1

JTheorem:

PGl(i) :Gl\T?(d/Gm(z) ' 1_GT.(Z)
(3=1 1-2)G, ()

| |

g.f. of conditional
numbers of customers in G.F. of equilibrium
corresponding M*/G/1, forward recurrence

given that server in state 1




Decomposition Theorem M/G/1

JTheorem:
G,(2)  Guen@-0-p)  1-G,(2)

P(J =1) P (1-2)G’, ()
G(z) _(-p) 1- B(A(1-2))  1-G,(2)
PA=1)  p 'Bl-2)-z (@1-2G.,q)

\ )
|

Conditional number of customers in standard M/G/1, given

that the system in working phase (Pollaczek-Khinnchin)




Decomposition Theorem M*/M/1

I Theorem:

Gl(Z) 1_6\11(2)

=7-G_, (Z) '
P(J =1) M 1-2)G'y (@)

G.F. of mod G.E. of equilibrium
M*/M/1 forward recurrence




Decomposition Theorem M*/M/1

JATheorem:
o O =y
First form |\/| /|\/|/1(Z) . |
P(J=1) 1-2)G'y (D)
G(2) _Guun@-U-p) A-2)G ()  1-G,(2)
P(J=1) 0 1-G, (2) (1-2)G’, (1)
(1-p)

GMX/Mll(Z):l 1-G (Z)
(1 z)G (1)



Decomposition Theorem M*/G/1

JProof: Simple case — M/M/1 system, vacations phase always ends with 3
customers in the system

(JExample: one cycle sample realization




Decomposition Theorem M*/G/1

JProof: Simple case — M/M/1 system, vacations phase always ends with 3
customers in the system

(JExample: one cycle sample realization

\ A \ )
| |
M/M/1 busy M/M/1 busy M/M/1 busy
period period period




Decomposition Theorem M*/G/1

dProof: Simple case — M/M/1 system, vacations always end with 3 customers in
the system

(JExample: one cycle sample realization

PUJ =1  u-Az
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Decomposition Theorem M*/G/1

dProof: Simple case — M/M/1 system, vacations always end with 3 customers in
the system

(JExample: one cycle sample realization

il

G,(z2) _, M= .(1 z+z_2j Y z° 1 /,u 1-G, (2)

—2z3(1-2) 1-Az /ﬂ 1-2)G, (1)




Decomposition Theorem M*/G/1

JProof: Simple case — M/M/1 system, vacations phase ends with random
number of customers

Qin this situation, we calculate G,(Z) by conditioning on ¥ and taking in the
account the inspection paradox (sampling-bias correction)

G(z) _ p-4 1-Gy(2)
PU=1) u-1iz(1-2)G,Q)



Decomposition Theorem M*/G/1

dProof: M*/M/1 system, vacation ends with random number of customers

Qin this situation, we calculate G;(2) by conditioning on Y and taking in the
account the inspection paradox (sampling-bias correction)

G(2) _ . (1-p) - 1-Gy(2)
PU=D |, 1-G,(z2) (1-2)G", (1)
| (I-2)G", (1)




Decomposition Theorem M*/G/1

dProof 2: M*/M/1 system, vacation ends with random number of customers

It is possible to prove theorem using generating function approach and
balance equations

HITy 1 — G, (z)c

u(l-2)-A20-G(2)) g (. Wm-Gu@)2 _ (-G,@0z __ (-G,()c
BT U2 - 20-G,(2)  ul-2)-42(-G,(2)  w(l-2)-iz(l-G,(2))

GQ)=r,= G‘\P(Z\)C
T ou-4AG ()

Gl(z) =1

A .
G(2) _ (-G, (2)ez ﬂ—ﬂG‘g(l)_z”(1_2)(1_;169(1)) (1-G, ()
7, wl-2)-220-G,(2) G,()c  wl-2)-22(1-G,(2) (1-2)G',(2)c
Gi(2) _

A Ax
1-2)|1-—G (1
i H( Z)[ p g()j 1-Gy (2) _, ul-z)(1-p) - 1-Gy(»

£, ul-2)-72(1-G,(2) (-2)G\(2)  wl-2)-22(1-G,(z) (1-2)G\,Q)



Decomposition Theorem M/G/1

JProof: M/G/1 system, vacation ends with random number of customers

Qin this situation, we calculate G;(2) by conditioning on Y and taking in the
account the inspection paradox (sampling-bias correction)

G, (2) :GM/Gll(Z)_(l_p) . 1-G, (2)
P(J =1) 5 1-2G, @




Decomposition Theorem M/G/1

JProof: M/G/1 system, vacation ends with random number of customers

Qin this situation, we calculate G;(2) by conditioning on Y and taking in the
account the inspection paradox (sampling-bias correction)

G,(2) _ Guien(2) —(1-p) . 1-G, (2)
P(J =1) P (1-2)G ()
G(z) _(-p) 1-B(A(l-2)  1-Gy(2)
P(J l) Jo, B(ﬂ,(l z)-z (1-2)G, (@)




Decomposition Theorem M*/G/1

dUnder investigation

Gl(Z) :Gmod (Z) ) I_G‘P(Z)
p(J=1) Mo (1-2)G', (1)

| |

g.f. of conditional
numbers of customers in G.F. of equilibrium

corresponding M*/G/1, forward recurrence
given that server in state 1




Example: M/M/1 Vacation Server with
reneging |mpat|ence
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Special Example



M/M/1 vacation system with balking impatience
customers and state depend vacations

AM/M/1 server queue with multiple vacations

A Poisson arrivals during working phase
JAs soon as the system becomes empty, the server goes on multiply vacation

dThe vacation time is a random exponential variable with the densityy;,

where i is the number of customers in the system

During vacation arriving customer joins at system with probability p; when

he sees i customers in the system



M/M/1 Vacation Server with balking impatience

customers
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M/M/1 Vacation Server with Balking Impatience Customers
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Solution

dWhen {y.} and {p} are rational function of i, G,(z) can be obtained by
solution of second order differential equation

dThe formula for G, (z) also can be obtained using hypergeometric
functions

dDenote

r AR, Vi

ﬂ’pi+l+7/i+1 7/i




Solution

dWhen {y.} and {p} are rational function of i, G,(z) can be obtained by
solution of second order differential equation

dThe formula for G, (z) also can be obtained using hypergeometric
functions

A Then: k+a
/lpi 7/i+1 _ ];:1[( I)

ipi+1+7/i+1 7/i (k+1)H(k+bl)
i=1




Solution

dWhen {y.} and {p} are rational function of i, G,(z) can be obtained by
solution of second order differential equation

dThe formula for G, (z) also can be obtained using hypergeometric
functions

dThen: []k+a)

pl 7/ +1 1=
CONCRETE MATHEMATICS
A FOUNDATION FOR CO R SCIENCE

ﬁvpm T7ia Vi (k _|_1)H (k _|_bi) ,
i=1 '

- a,d,,...,a,
G, (2)= CF( b b ,ﬂz]

/n this case:




M/M/1 Vacation system with balking impatience
customers - demonstration

yi =141, pizﬁ

o _ Ai+2)(i+2)

Bio : : .3 NJ1-4A4|. 3 +1-44
(1+D@+1) |+§+ 5 |+§— 5

2,2
Gy (2) = cF[l 3 N1-41 3 J1-42 Iiz]

2 2 2 2

2,2
1—cl{ 3 J1-41 3 \/14/1|zzJ
1,——+ D
G(z) _ wu-4 2 2 2 2
PJ=1) u-iz (1-2)G (1)




M/M/1 Vacation Server with Balking Impatience
Customers - Conclusion
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For rational parameters the resulting G.F. is the product of G.F. of M/M/1

gueue with corresponding hypergeometric function
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Primary definition (2 formulas)
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Vacation server with balking during vacation
and identical 7

JFor this model we found quantities of interest
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Decomposition Theorem M~AX/G/1

d G,"(2) -the g.f. of number customers leaving at departure of random
customer in working phase

dUsing similar approach we proved next theorem
JTheorem 2:
1-G,(2)

G, (2) = ——2x\2 G,(2)
1-2)G', (1) (1-2)G', @




Vacation server with balking during vacation
and identical »

JFor this model we found quantities of interest
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Decomposition Theorem M~AX/G/1

d G, (2) -the g.f. of number customers leaving at departure of random
customer in working phase

dUsing similar approach we proved next theorem
JTheorem 2:
1-G,(2)

G, (2) = ——2x\2 G,(2)
1-2)G', (1) (1-2)G', @




Decomposition Theorem MAX/M/1

QTheorem: &2 _,  #d-2)1-p) - 1-Gy(2)
P(J=1)  u(l-2)-1z(1-G,(2)) (1-2)G, (1)

dProof: Simple case — M/M/1 system, vacations always end with 3 customers
in the system




Decomposition Theorem MAX/M/1

1 Theorem:
 om G(z) _ (1-p) - 1-G,(2)
Pa=1) o, 176G (2) (1-2)G', (1)
PTa-2G, )

G, (2) _GMX/Mll_(l_p).(1_2)6\9(1) . 1-G,(2)

PQA=1) p 1-G,(z)  (1-2)G, ()
— G(2) _,  u-2)A-p) 1-G,(2)

PU=1) ~ul-2)-2(1-G,(2)) (1-2)G, ()




