$M^{x / G / 1}$ queues with general vacations: decomposition results

I. Kleiner

2018

Overview

IIntroduction
\square Queueing models with vacations
\square Decomposition property
\square Special examples

Introduction

\square Queues with vacations are important class of queues, useful to describe and analyze: computer systems, communication networks etc.
\square A vacation, in queueing context, is the period when the server does not attending to a particularly targeted queue

The vacation starts only when the system becomes empty
\square Server can return from vacation only when at least one customer in the system

Introduction - continue

DSince work of Levy and Yechiali: about vacation queues, researchers have studied vacations queueing systems with extensions:
\square Working (utilized) vacation policy (Y. Levy)
\square Abandonments during vacation (U. Yechiali)
\square Synchronize reneging (I. Adan)

Introduction - decomposition result

\square For each of these examples, authors provide decomposition results for the steady states probabilities of the number of customers in the system

Introduction - decomposition result

\square Decomposition result: the steady state distribution (s.s.d.) of the number of customers in the system is a convolution of:

The s.s.d. of the number of customers in the corresponding system without vacation

The number of customers in vacation
"Understanding this decomposition is helpful to analyze some complex models"
B.T. Doshi Queuing systems with vacations - a survey

Our Results

Decomposition results: for the broad class of vacation systems:
$\square M^{\wedge} \mathrm{X} / \mathrm{G} / 1$ queueing system with general vacation policies
$\square M^{\wedge} X / M / 1$ queueing system with general vacations policies
\square Analysis of vacation models with balking impatience customers with rational rates

M ${ }^{\mathrm{X}}$ /G/1 - Decomposition Result

Model Definition

$\square M^{x} / G / 1$ queue with general vacation
\square Compound Poisson arrivals during working phase
\square As soon as the system becomes empty, the server goes on vacation
\square During vacations:
\square customers may: arrive, balk, renege, leave alone or in group due to disaster etc.

The server can serve vacation queue in any way: in group, in one, etc.
\square At the end of vacation the customers can: leave in group, born new generation, etc.

Model Assumptions

\square Existence of stationary distribution of Ψ - the number of customers in the system at the end of vacation epoch

At the end of vacation the server restarts the service of the customers

General description: $\mathrm{M}^{\mathrm{X}} / \mathrm{M} / 1$ Model

General description: MT/M/1 Model

Example: $\mathrm{M}^{\mathrm{x}} / \mathrm{M} / 1$ system with impatient customers during vacation - reneging and balking

Example: Impatient Customers During Vacation - reneging

$\eta=1$
(server
is busy)
$\dot{\eta}=0$
(server is on vacation)
L :
:

Analysis of customers' impatience in queues with server vacations

Example: MAE model

Synchronized reneging in queueing systems with vacations

Decomposition Theorem - notations:

DNotation:
$\square L$ the number of the customers in the system
IJ the phase of the system: J=0 vacation phase, J=1 working phase
$\square \pi_{\mathrm{n}, \mathrm{j}}=\mathrm{P}(\mathrm{L}=\mathrm{n}, \mathrm{J}=\mathrm{j})$ - the system s.s.d. for $\mathrm{n}=\mathrm{j}, 2,3, \ldots, \mathrm{j}=0,1$

- $G_{0}(z)=\sum_{i=0}^{\infty} \pi_{n, 0} z^{j}, G_{1}(z)=\sum_{i=1}^{\infty} \pi_{n, 1} z^{j}$ - partial probability generating functions pgf.
$\square \Psi$ the number of customers in the system at the end of vacation epoch
$\square G_{g}(z)=\sum_{i=1}^{\infty} g_{i} z^{j}$ - the probability generating function of the arrival group size

Decomposition Theorem M̌/G/1

DTheorem:

$$
\frac{G_{1}(z)}{P(J=1)}=G_{M^{X} / G / 1}^{\bmod }(z) \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

g.f. of conditional numbers of customers in corresponding $\mathrm{M}^{\mathrm{x}} / \mathrm{G} / 1$, given that server in state 1

G.F. of equilibrium forward recurrence

Decomposition Theorem M/G/1

DTheorem:

$$
\begin{aligned}
& \frac{G_{1}(z)}{P(J=1)}=\frac{G_{M / G / 1}(z)-(1-\rho)}{\rho} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(1)} \\
& \frac{G_{1}(z)}{P(J=1)}=\frac{(1-\rho)}{\rho} z \frac{1-\tilde{B}(\lambda(1-z))}{\tilde{B}(\lambda(1-z))-z} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(1)}
\end{aligned}
$$

> Conditional number of customers in standard M/G/1, given that the system in working phase (Pollaczek-Khinnchin)

Decomposition Theorem Mx/M/1

DTheorem:

$$
\frac{G_{1}(z)}{P(J=1)}=z \cdot G_{M^{X} / M / 1}(z) \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

G.F. of mod M ${ }^{\mathrm{x}} / \mathrm{M} / 1$

G.F. of equilibrium forward recurrence

Decomposition Theorem $\mathrm{M}^{\mathrm{x}} / \mathrm{M} / 1$

口Theorem:

First form

$$
\frac{G_{1}(z)}{P(J=1)}=z \cdot G_{M^{X} / M / 1}(z) \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\psi}^{\prime}(1)}
$$

Second form

$$
\frac{G_{1}(z)}{P(J=1)}=\frac{G_{M^{x} / M / 1}(z)-(1-\rho)}{\rho} \cdot \frac{(1-z) G_{g}^{\prime}(1)}{1-G_{g}(z)} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

$$
G_{M^{x} / M / 1}(z)=\frac{(1-\rho)}{1-\rho z \frac{1-G_{g}(z)}{(1-z) G_{g}^{\prime}(1)}}
$$

Decomposition Theorem M ${ }^{\text {º/ }} \mathrm{G} / 1$

\square Proof: Simple case - M/M/1 system, vacations phase always ends with 3 customers in the system
\square Example: one cycle sample realization

Decomposition Theorem $\mathrm{M}^{\mathrm{X}} / \mathrm{G} / 1$

DProof: Simple case - M/M/1 system, vacations phase always ends with 3 customers in the system
\square Example: one cycle sample realization

Decomposition Theorem $\mathrm{M}^{\mathrm{x}} / \mathrm{G} / 1$

DProof: Simple case - M/M/1 system, vacations always end with 3 customers in the system
Example: one cycle sample realization

$$
\frac{G_{1}(z)}{P(J=1)}=z \frac{\mu-\lambda}{\mu-\lambda z} \cdot\left(\frac{1}{3}+\frac{z}{3}+\frac{z^{2}}{3}\right)
$$

Decomposition Theorem M ${ }^{\text {º/ }} \mathrm{G} / 1$

DProof: Simple case - M/M/1 system, vacations always end with 3 customers in the system
Example: one cycle sample realization

$$
\frac{G_{1}(z)}{P(J=1)}=z \frac{\mu-\lambda}{\mu-\lambda z} \cdot\left(\frac{1}{3}+\frac{z}{3}+\frac{z^{2}}{3}\right)=z \frac{\mu-\lambda}{\mu-\lambda z} \frac{1-z^{3}}{3(1-z)}=z \frac{1-\lambda / \mu}{1-\lambda z / \mu} \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(1)}
$$

Decomposition Theorem M ${ }^{\text {x/G/G }}$

DProof: Simple case - M/M/1 system, vacations phase ends with random number of customers
In this situation, we calculate $G_{1}(z)$ by conditioning on Ψ and taking in the account the inspection paradox (sampling-bias correction)

$$
\frac{G_{1}(z)}{P(J=1)}=z \frac{\mu-\lambda}{\mu-\lambda z} \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

Decomposition Theorem M ${ }^{\text {º/ }} \mathrm{G} / 1$

DProof: $\mathbf{M}^{\mathbf{x}} / \mathbf{M} / \mathbf{1}$ system, vacation ends with random number of customers In this situation, we calculate $G_{1}(z)$ by conditioning on Ψ and taking in the account the inspection paradox (sampling-bias correction)

$$
\frac{G_{1}(z)}{P(J=1)}=z \frac{(1-\rho)}{1-\rho z \frac{1-G_{g}(z)}{(1-z) G_{g}^{\prime}(1)}} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{{ }_{\Psi}}^{\prime}(1)}
$$

Decomposition Theorem M ${ }^{\text {x/G/ }}$ /1

\square Proof 2: $\mathrm{M}^{\mathrm{x}} / \mathrm{M} / 1$ system, vacation ends with random number of customers It is possible to prove theorem using generating function approach and balance equations

$$
\begin{aligned}
G_{1}(z)=z \frac{\mu \pi_{1,1}-G_{\Psi}(z) c}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} G_{1}(z) & =\frac{\left(\mu \pi_{1,1}-G_{\Psi}(z) c\right) z}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)}=\frac{\left(c-G_{\Psi}(z) c\right) z}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)}=\frac{\left(1-G_{\Psi}(z)\right) c z}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \\
G_{1}(1) & =\pi_{,, 1}=\frac{G_{\Psi}^{\prime}(z) c}{\mu-\lambda G_{g}^{\prime}(1)} \\
\frac{G_{1}(z)}{\pi_{., 1}} & =\frac{\left(1-G_{\Psi}(z)\right) c z}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \frac{\mu-\lambda G_{g}^{\prime}(1)}{G_{\Psi}^{\prime}(z) c}=z \frac{\mu(1-z)\left(1-\frac{\lambda}{\mu} G_{g}^{\prime}(1)\right)}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \frac{\left(1-G_{\Psi}(z)\right) c}{(1-z) G_{\Psi}(z) c} \\
\frac{G_{1}(z)}{\pi_{,, 1}} & =z \frac{\mu(1-z)\left(1-\frac{\lambda}{\mu} G_{g}^{\prime}(1)\right)}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(z)}=z \frac{\mu(1-z)(1-\rho)}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(1)}
\end{aligned}
$$

Decomposition Theorem M/G/1

-Proof: M/G/1 system, vacation ends with random number of customers
In this situation, we calculate $G_{1}(z)$ by conditioning on Ψ and taking in the account the inspection paradox (sampling-bias correction)

$$
\frac{G_{1}(z)}{P(J=1)}=\frac{G_{M / G / 1}(z)-(1-\rho)}{\rho} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

Decomposition Theorem M/G/1

\square Proof: M/G/1 system, vacation ends with random number of customers
In this situation, we calculate $G_{1}(z)$ by conditioning on Ψ and taking in the account the inspection paradox (sampling-bias correction)

$$
\begin{aligned}
& \frac{G_{1}(z)}{P(J=1)}=\frac{G_{M / G / 1}(z)-(1-\rho)}{\rho} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)} \\
& \frac{G_{1}(z)}{P(J=1)}=\frac{(1-\rho)}{\rho} z \frac{1-\tilde{B}(\lambda(1-z))}{\tilde{B}(\lambda(1-z))-z} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
\end{aligned}
$$

Decomposition Theorem $\mathrm{M}^{\mathrm{X}} / \mathrm{G} / 1$

\square Under investigation

$$
\frac{G_{1}(z)}{P(J=1)}=G_{M^{X} / G / 1}^{\bmod }(z) \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

g.f. of conditional numbers of customers in corresponding $\mathrm{M}^{\mathrm{x}} / \mathrm{G} / 1$, given that server in state 1
G.F. of equilibrium forward recurrence

Example: $M / M / 1$ Vacation Server with reneging impatience

$$
j=1
$$

on vacation)
L :

$$
\frac{G_{1}(z)}{P(J=1)}=z \frac{\mu-\lambda}{\mu-\lambda z} \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(1)}
$$

$$
G_{1}(z)=\frac{\gamma G_{0}(z) z-A z}{(\lambda z-\mu)(1-z)}, \quad \gamma P_{0 \bullet}=A,
$$

$$
G_{\Psi}(z)=\frac{\gamma \sum_{i=1}^{\infty} \pi_{i, 0} z^{j}}{\gamma \sum_{i=1}^{\infty} \pi_{i, 0}}=\frac{G_{0}(z)-\pi_{00}}{\pi_{., 0}-\pi_{00}}
$$

Analysis of customers' impatience in queues with server vacations

Special Example

$\mathrm{M} / \mathrm{M} / 1$ vacation system with balking impatience customers and state depend vacations

$\square M / M / 1$ server queue with multiple vacations
\square Poisson arrivals during working phase
\square As soon as the system becomes empty, the server goes on multiply vacation
\square The vacation time is a random exponential variable with the density γ_{i}, where i is the number of customers in the system
\square During vacation arriving customer joins at system with probability p_{i} when he sees i customers in the system

M/M/1 Vacation Server with balking impatience customers

M/M/1 Vacation Server with Balking Impatience Customers
$j=1$
(server
is busy)
$j=0$ on vacation)

L :
0

$$
\begin{aligned}
& \begin{array}{c}
1 \\
\frac{G_{1}(z)}{P(J=1)}=z \frac{2}{\mu-\lambda} \\
\mu-\lambda z
\end{array} \overbrace{}^{3} \\
& G_{\Psi}(z)=\frac{\sum_{i=1}^{\infty} \gamma_{i} \pi_{i, 0} z^{j}}{c}=\frac{\sum_{i=1}^{\infty} \beta_{i} z^{j}}{c} \quad \beta_{i}=\gamma_{i} \pi_{i, 0}(z)
\end{aligned}
$$

$$
\boldsymbol{n}
$$

Solution

When $\left\{\gamma_{i}\right\}$ and $\left\{p_{i}\right\}$ are rational function of $i, G_{\psi}(z)$ can be obtained by solution of second order differential equation
\square The formula for $G_{\psi}(z)$ also can be obtained using hypergeometric functions
\square Denote

$$
r_{k}=\frac{\lambda p_{i}}{\lambda p_{i+1}+\gamma_{i+1}} \frac{\gamma_{i+1}}{\gamma_{i}}
$$

Solution

When $\left\{\gamma_{i}\right\}$ and $\left\{p_{i}\right\}$ are rational function of $i, G_{\psi}(z)$ can be obtained by solution of second order differential equation
\square The formula for $G_{\psi}(z)$ also can be obtained using hypergeometric functions
\square Then:

$$
r_{k}=\frac{\lambda p_{i}}{\lambda p_{i+1}+\gamma_{i+1}} \frac{\gamma_{i+1}}{\gamma_{i}}=\frac{\prod_{i=1}^{m}\left(k+a_{i}\right)}{(k+1) \prod_{i=1}^{n}\left(k+b_{i}\right)}
$$

Solution

\square When $\left\{\gamma_{i}\right\}$ and $\left\{p_{i}\right\}$ are rational function of $i, G_{\mu}(z)$ can be obtained by solution of second order differential equation
DThe formula for $G_{\psi}(z)$ also can be obtained using hypergeometric functions
-Then:

$$
r_{k}=\frac{\lambda p_{i}}{\lambda p_{i+1}+\gamma_{i+1}} \frac{\gamma_{i+1}}{\gamma_{i}}=\frac{\prod_{i=1}^{m}\left(k+a_{i}\right)}{(k+1) \prod_{i=1}^{n}\left(k+b_{i}\right)}
$$

In this case:

$$
G_{\Psi}(z)=c F\left(\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{m} \\
b_{1}, \ldots, b_{n}
\end{array} ; \lambda z\right)
$$

$M / M / 1$ Vacation system with balking impatience customers - demonstration

$$
\begin{aligned}
& \gamma_{i}=i+1, p_{i}=\frac{1}{i+1} \\
& \frac{\beta_{i+1,0}}{\beta_{i, 0}}=\frac{\lambda(i+2)(i+2)}{(i+1)(i+1)\left(i+\frac{3}{2}+\frac{\sqrt{1-4 \lambda}}{2}\right)\left(i+\frac{3}{2}-\frac{\sqrt{1-4 \lambda}}{2}\right)} \\
& G_{\Psi}(z)=c F\left(1,-\frac{3}{2}+\frac{\sqrt{1-4 \lambda}}{2}, \left.-\frac{3}{2}-\frac{\sqrt{1-4 \lambda}}{2} \right\rvert\, \lambda z\right) \\
& \frac{G_{1}(z)}{P(J=1)}=z \frac{\mu-\lambda}{\mu-\lambda z} \cdot \frac{1-c F\left(1,-\frac{3}{2}+\frac{\sqrt{1-4 \lambda}}{2}, \left.-\frac{3}{2}-\frac{\sqrt{1-4 \lambda}}{2} \right\rvert\, \lambda z\right)}{(1-z) G_{\Psi}^{\prime}(1)}
\end{aligned}
$$

$M / M / 1$ Vacation Server with Balking Impatience Customers - Conclusion

For rational parameters the resulting G.F. is the product of G.F. of $M / M / 1$ queue with corresponding hypergeometric function

Bibliography

- Y. Levy, U. Yechiali "Utilization of idle time in an M/G/1 queueing system"
- Altman and Yechiali Analysis of customers impatience in queues with server vacation
- I. Adan A. Economou S. Kapodistria Synchronized reneging in queueing systems with vacations
- Ho Woo Lee, Soon Seok Lee, Kyung C. ChaeR, On a batch service queue with single vacation
- A. Borthakur, On a batch arrival poison queue with generalized vacation

THE END

Primary definition (2 formulas)

$$
{ }_{2} F_{2}\left(a_{1}, a_{2} ; b_{1}, b_{2} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} k!}
$$

Vacation server with balking during vacation and identical γ

\square For this model we found quantities of interest

Decomposition Theorem $M^{\wedge} \times / G / 1$

$\square G_{1}{ }^{+}(z)$ - the g.f. of number customers leaving at departure of random customer in working phase
\square Using similar approach we proved next theorem
-Theorem 2:

$$
{G_{1}^{+}}_{1}(z)=\frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)} \frac{1-G_{g}(z)}{(1-z) G_{g}^{\prime}(1)} G_{1}(z)
$$

Vacation server with balking during vacation and identical γ

\square For this model we found quantities of interest

$$
\begin{aligned}
& \pi_{0,0}=\left(\frac{\gamma}{\mu-\lambda} \sum_{i=1}^{\infty} \frac{i \lambda^{i} \prod_{j=0}^{i-1} p_{j}}{\prod_{j=1}^{n} p_{j} \lambda+\gamma}+\frac{\gamma+p_{0} \lambda}{\gamma}\right)^{-1} \\
& E L_{0}=\frac{\mu-\lambda}{\gamma}\left(1-\frac{\gamma+p_{0} \lambda}{\gamma} \pi_{0,0}\right) \quad E B P=\sum_{i=1}^{\infty} \frac{(\mu-\lambda+i \gamma) \prod_{j=1}^{i-1}\left(\lambda p_{j}\right)}{\prod_{j=1}^{i}\left(\gamma+\lambda p_{j}\right)} \\
& \pi_{n, 1}=\frac{\lambda}{\mu}\left[p_{n-1} \pi_{n-1,0}+\sum_{1 \leq j<n}\left(\frac{\lambda}{\mu}\right)^{n-j} p_{j-1} \pi_{j-1,0}\right]
\end{aligned}
$$

Decomposition Theorem $M^{\wedge} \times / G / 1$

- $G_{1}^{+}(z)$ - the g.f. of number customers leaving at departure of random customer in working phase
\square Using similar approach we proved next theorem
-Theorem 2:

$$
{G_{1}^{+}}_{1}(z)=\frac{1-G_{\Psi}(z)}{(1-z) G^{\prime}{ }_{\Psi}(1)} \frac{1-G_{g}(z)}{(1-z) G_{g}^{\prime}(1)} G_{1}(z)
$$

Decomposition Theorem $\mathrm{M}^{\wedge} \mathrm{X} / \mathrm{M} / 1$

\square Theorem: $\underset{P(J=1)}{\frac{G_{1}(z)}{P}=z \frac{\mu(1-z)(1-\rho)}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}(1)}}$
\square Proof: Simple case - M/M/1 system, vacations always end with 3 customers in the system

Decomposition Theorem $\mathrm{M}^{\wedge} \mathrm{X} / \mathrm{M} / 1$

口Theorem:

$$
\text { First form } \frac{G_{1}(z)}{P(J=1)}=z \cdot \frac{(1-\rho)}{1-\rho z \frac{1-G_{g}(z)}{(1-z) G_{g}^{\prime}(1)}} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

Second form

$$
\frac{G_{1}(z)}{P(J=1)}=\frac{G_{M^{x} / M / 1}-(1-\rho)}{\rho} \cdot \frac{(1-z) G_{g}^{\prime}(1)}{1-G_{g}(z)} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

Third form

$$
\frac{G_{1}(z)}{P(J=1)}=z \frac{\mu(1-z)(1-\rho)}{\mu(1-z)-\lambda z\left(1-G_{g}(z)\right)} \cdot \frac{1-G_{\Psi}(z)}{(1-z) G_{\Psi}^{\prime}(1)}
$$

