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Introduction
❑Queues with vacations are important class of queues, useful to describe and 

analyze: computer systems, communication networks etc.

❑A vacation, in queueing context, is the period when the server does not 

attending to a particularly targeted queue

❑The vacation starts only when the system becomes empty 

❑Server can return from vacation only when at least one customer in the 

system



Introduction - continue

❑Since work of Levy and Yechiali: about vacation queues, researchers have 

studied vacations queueing systems with extensions:

❑Working (utilized) vacation policy  (Y. Levy)

❑Abandonments during vacation (U. Yechiali)

❑Synchronize reneging (I. Adan)



Introduction – decomposition result
❑For each of these examples, authors provide decomposition results for the 

steady states probabilities of the number of customers in the system



Introduction – decomposition result
❑Decomposition result: the steady state distribution (s.s.d.) of the number of 

customers in the system is a convolution of:

❑ The s.s.d. of the number of customers in the corresponding system without 

vacation

❑ The number of customers in vacation

“Understanding this decomposition is helpful to analyze some complex models”

B.T. Doshi Queuing systems with vacations - a survey



Our Results

❑ Decomposition results: for the broad class of vacation systems:

❑M^X/G/1 queueing system with general vacation policies

❑M^X/M/1 queueing  system with general vacations policies

❑Analysis of vacation models with balking impatience customers with rational  

rates



MX/G/1  - Decomposition Result



Model Definition
❑MX/G/1 queue with general vacation

❑Compound Poisson arrivals during working phase

❑As soon as the system becomes empty, the server goes on vacation

❑During vacations:

❑ customers may: arrive, balk, renege, leave alone or in group due to 

disaster etc.

❑The server can serve vacation queue in any way: in group, in one, etc.

❑At the end of vacation the customers can: leave in group, born new

generation, etc.



Model Assumptions

❑Existence of  stationary distribution of - the number of customers in the 

system at the end of vacation epoch

❑At the end of vacation the server restarts the service of the customers


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Example: MX/M/1 system with impatient 
customers during vacation - reneging and 

balking

Server is busy

Server is on 
vacation



Example: Impatient Customers During 
Vacation - reneging



Example: MAE model



Decomposition Theorem – notations:

❑Notation:

❑L the number of the customers in the system

❑J the phase of the system: J=0 vacation phase, J=1 working phase

❑𝜋n,j=P(L=n,J=j) - the system s.s.d. for n=j,2,3,…, j=0,1

❑ - partial probability generating functions pgf.

❑ the number of customers in the system at the end of vacation epoch

❑ - the probability generating function of the arrival group size
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Decomposition Theorem MX/G/1
❑Theorem:
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Decomposition Theorem M/G/1
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Decomposition Theorem MX/M/1
❑Theorem:
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Decomposition Theorem MX/M/1
❑Theorem:
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Decomposition Theorem MX/G/1
❑Proof: Simple case – M/M/1 system, vacations phase always ends with 3

customers in the system

❑Example: one cycle sample realization



Decomposition Theorem MX/G/1
❑Proof: Simple case – M/M/1 system, vacations phase always ends with 3
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❑Proof: Simple case – M/M/1 system, vacations always end with 3 customers in
the system

❑Example: one cycle sample realization

Decomposition Theorem MX/G/1
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Decomposition Theorem MX/G/1
❑Proof: Simple case – M/M/1 system, vacations always end with 3 customers in

the system

❑Example: one cycle sample realization

1

2 3

1

1
( ) 1 ( )1 1

( 1) 3 3 3 3(1 ) (1 ) ` (1)1

G z G zz z z
z z z

zP J z z z z G


    

   






−  −− − −
=  + + = = 

= − − − −− 



Decomposition Theorem MX/G/1
❑Proof: Simple case – M/M/1 system, vacations phase ends with random

number of customers

❑In this situation, we calculate by conditioning on and taking in the
account the inspection paradox (sampling-bias correction)
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Decomposition Theorem MX/G/1
❑Proof: MX/M/1 system, vacation ends with random number of customers

❑In this situation, we calculate by conditioning on and taking in the
account the inspection paradox (sampling-bias correction)
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Decomposition Theorem MX/G/1
❑Proof 2: MX/M/1 system, vacation ends with random number of customers

❑It is possible to prove theorem using generating function approach and 
balance equations
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Decomposition Theorem M/G/1
❑Proof: M/G/1 system, vacation ends with random number of customers

❑In this situation, we calculate by conditioning on and taking in the
account the inspection paradox (sampling-bias correction)
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Decomposition Theorem M/G/1
❑Proof: M/G/1 system, vacation ends with random number of customers

❑In this situation, we calculate by conditioning on and taking in the
account the inspection paradox (sampling-bias correction)
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Decomposition Theorem MX/G/1
❑Under investigation



Example: M/M/1 Vacation Server with 
reneging impatience
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Special Example



M/M/1 vacation system with balking impatience 
customers and state depend vacations

❑M/M/1 server queue with multiple vacations

❑Poisson arrivals during working phase

❑As soon as the system becomes empty, the server goes on multiply vacation

❑The vacation time is a random exponential variable with the density ,

where i is the number of customers in the system

❑During vacation arriving customer joins at system with probability pi when

he sees i customers in the system

i



M/M/1 Vacation Server with balking impatience 
customers



M/M/1 Vacation Server with Balking Impatience Customers
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Solution

❑When { i} and {pi} are rational function of i, can be obtained by
solution of second order differential equation

❑The formula for           also can be obtained using hypergeometric 
functions

❑Denote
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Solution

❑When { i} and {pi} are rational function of i, can be obtained by
solution of second order differential equation

❑The formula for           also can be obtained using hypergeometric 
functions

❑Then:
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Solution

❑When { i} and {pi} are rational function of i, can be obtained by
solution of second order differential equation

❑The formula for           also can be obtained using hypergeometric 
functions

❑Then:

❑In this case:
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M/M/1 Vacation Server with Balking Impatience 
Customers  - Conclusion

For rational parameters the resulting G.F. is the product of G.F. of M/M/1 
queue with corresponding hypergeometric function
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Vacation server with balking during vacation 
and identical 
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❑ - the g.f. of number customers leaving at departure of random 

customer in working phase

❑Using similar approach we proved next theorem

❑Theorem 2:

1 1

1 ( )1 ( )
( ) ( )

(1 ) ' (1) (1 ) ' (1)

g

g

G zG z
G z G z

z G z G

+ 



−−
=

− −

1 ( )G z+



Vacation server with balking during vacation 
and identical 

❑For this model we found quantities of interest





Decomposition Theorem M^X/G/1
❑ - the g.f. of number customers leaving at departure of random 

customer in working phase

❑Using similar approach we proved next theorem

❑Theorem 2:

1 1

1 ( )1 ( )
( ) ( )

(1 ) ' (1) (1 ) ' (1)

g

g

G zG z
G z G z

z G z G

+ 



−−
=

− −

1 ( )G z+



Decomposition Theorem M^X/M/1

❑Theorem:

❑Proof: Simple case – M/M/1 system, vacations always end with 3 customers
in the system
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Decomposition Theorem M^X/M/1
❑Theorem:
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