A queueing perspective on randomized work sharing vs work stealing

B. Van Houdt

December 4, 2018

Outline

- 2 Traditional strategies
- 3 Rate-based Strategies
- 4 Global attraction
- **(5)** Non-exponential job sizes

Outline

- Traditional strategies
- 3 Rate-based Strategies
- 4 Global attraction
- 5 Non-exponential job sizes

• Set of N servers, each subject to local Poisson arrivals (rate λ)

Set of N servers, each subject to local Poisson arrivals (rate λ)
Inefficient: as servers may be idle while others have pending jobs

- Set of N servers, each subject to local Poisson arrivals (rate λ)
- Inefficient: as servers may be idle while others have pending jobs
- Redistribute the work/jobs

- Set of N servers, each subject to local Poisson arrivals (rate λ)
- Inefficient: as servers may be idle while others have pending jobs
- Redistribute the work/jobs
- Strategies:
 - Work stealing (pull): lightly-loaded servers attempt to steal work
 - **2** Work sharing (push): heavily-loaded servers attempt to share work

Setting

- Set of N servers, each subject to local Poisson arrivals (rate λ)
- Inefficient: as servers may be idle while others have pending jobs
- Redistribute the work/jobs
- Strategies:
 - Work stealing (pull): idle servers attempt to steal work
 - Work sharing (push): servers with pending jobs attempt to share work

Setting

- Set of N servers, each subject to local Poisson arrivals (rate λ)
- Inefficient: as servers may be idle while others have pending jobs
- Redistribute the work/jobs
- Strategies:
 - Work stealing (pull): idle servers attempt to steal work
 - Work sharing (push): servers with pending jobs attempt to share work
- Stealing is clearly best under very high loads, sharing under very low loads

Outline

2 Traditional strategies

3 Rate-based Strategies

4 Global attraction

5 Non-exponential job sizes

Randomized Strategies [Eager, Lazowska & Zahorjan 1984]:

Work stealing: Whenever a server becomes idle, it probes up to L_p servers at random to steal a job

Randomized Strategies [Eager, Lazowska & Zahorjan 1984]:

- Work stealing: Whenever a server becomes idle, it probes up to L_p servers at random to steal a job
- Work sharing: Whenever a job arrives in a busy server, it probes up to L_p servers at random to transfer the incoming job

Work sharing: mean field model for expo job sizes

- An arriving job probes up to L_p servers at random for idle server
- $s_i(t)$: fraction of queues containing at least *i* jobs at time *t*

Work sharing: mean field model for expo job sizes

- $\bullet\,$ An arriving job probes up to L_p servers at random for idle server
- $s_i(t)$: fraction of queues containing at least *i* jobs at time *t*
- Set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) + \lambda s_1(t)(1 - s_1(t)^{L_p}) - (s_1(t) - s_2(t))$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))s_1(t)^{L_p} - (s_i(t) - s_{i+1}(t))$$

for $i \geq 2$.

December 4, 2018

Work sharing: mean field model for expo job sizes

- An arriving job probes up to L_p servers at random for idle server
- $s_i(t)$: fraction of queues containing at least *i* jobs at time *t*
- Set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) + \lambda s_1(t)(1 - s_1(t)^{L_p}) - (s_1(t) - s_2(t))$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))s_1(t)^{L_p} - (s_i(t) - s_{i+1}(t))$$

for $i \geq 2$.

• Unique fixed point: $\pi_{i+1} = \lambda^{1+(L_p+1)i}$ for $i \ge 0$.

8 / 38

Work stealing: mean field model for expo job sizes

- Server that becomes idle probes up to L_p servers at random
- $s_i(t)$: fraction of queues containing at least *i* jobs at time *t*

Work stealing: mean field model for expo job sizes

- Server that becomes idle probes up to L_p servers at random
- s_i(t): fraction of queues containing at least i jobs at time t
 Set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) - (s_1(t) - s_2(t))(1 - s_2(t))^{L_p}$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t)) - (s_i(t) - s_{i+1}(t))$$
$$- \frac{(s_i(t) - s_{i+1}(t))}{s_2(t)}(s_1(t) - s_2(t))(1 - (1 - s_2(t))^{L_p}),$$

for
$$i \ge 2$$
, where $\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))$ if $s_2(t) = 0$ and $i \ge 2$.

Work stealing: mean field model for expo job sizes

- Server that becomes idle probes up to L_p servers at random
- s_i(t): fraction of queues containing at least i jobs at time t
 Set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) - (s_1(t) - s_2(t))(1 - s_2(t))^{L_p}$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t)) - (s_i(t) - s_{i+1}(t))$$
$$- \frac{(s_i(t) - s_{i+1}(t))}{s_2(t)}(s_1(t) - s_2(t))(1 - (1 - s_2(t))^{L_p}),$$

for $i \ge 2$, where $\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))$ if $s_2(t) = 0$ and $i \ge 2$. • Unique fixed point: π_2 root of

$$g(x) = \lambda(1-\lambda) - (\lambda - x)(1-x)^{L_p} = 0,$$

Work stealing versus sharing (aka pull versus push)

Let's compare, right?

Work stealing versus sharing (aka pull versus push)

Let's compare, right? NO!

 \Rightarrow Communication overhead depends on the load and is not the same

YEQT 2018

Randomized work stealing/sharing

Outline

2 Traditional strategies

3 Rate-based Strategies

4 Global attraction

5 Non-exponential job sizes

• Work stealing: Whenever a server is idle, it randomly probes at rate r_{steal} to steal a job

- Work stealing: Whenever a server is idle, it randomly probes at rate r_{steal} to steal a job
- Work sharing: Whenever a server has pending jobs, it randomly probes at rate r_{share} to transfer a pending job

- Work stealing: Whenever a server is idle, it randomly probes at rate r_{steal} to steal a job
- Work sharing: Whenever a server has pending jobs, it randomly probes at rate r_{share} to transfer a pending job

Aren't traditional strategies better?

- Work stealing: Whenever a server is idle, it randomly probes at rate r_{steal} to steal a job
- Work sharing: Whenever a server has pending jobs, it randomly probes at rate r_{share} to transfer a pending job

Aren't traditional strategies better? NO!

Rate-based: mean field model for expo job sizes

- Single mean field model for stealing/sharing
- $s_i(t)$: fraction of queues containing at least *i* jobs at time *t*

Rate-based: mean field model for expo job sizes

- Single mean field model for stealing/sharing
- $s_i(t)$: fraction of queues containing at least i jobs at time t
- Set of ODEs:

$$\frac{d}{dt}s_1(t) = \lambda(1 - s_1(t)) - (s_1(t) - s_2(t)) + r(1 - s_1(t))s_2(t) ,$$

$$\frac{d}{dt}s_i(t) = \lambda(s_{i-1}(t) - s_i(t)) - (s_i(t) - s_{i+1}(t)) - r(1 - s_1(t)))(s_i(t) - s_{i+1}(t)) ,$$

for $i \geq 2$.

Rate-based: mean field model for expo job sizes

- Single mean field model for stealing/sharing
- $s_i(t)$: fraction of queues containing at least *i* jobs at time *t*
- Set of ODEs:

$$\frac{d}{dt}s_1(t) = \lambda(1 - s_1(t)) - (s_1(t) - s_2(t)) + r(1 - s_1(t))s_2(t) ,$$

$$\frac{d}{dt}s_i(t) = \lambda(s_{i-1}(t) - s_i(t)) - (s_i(t) - s_{i+1}(t)) - r(1 - s_1(t)))(s_i(t) - s_{i+1}(t)) ,$$

for $i \geq 2$.

• Unique fixed point: for $i \ge 1$

$$\pi_i(r) = \lambda \left(\frac{\lambda}{1 + (1 - \lambda)r}\right)^{i-1}$$

٠

Overall probe rate R

Let R be the number of probes transmitted per unit of time

Overall probe rate ${\cal R}$

Let R be the number of probes transmitted per unit of time

• Rate-based work stealing:

 $R_{steal} = (1 - \lambda)r_{steal}$

Overall probe rate ${\cal R}$

Let R be the number of probes transmitted per unit of time

• Rate-based work stealing:

$$R_{steal} = (1 - \lambda)r_{steal}$$

• Rate-based work sharing:

$$R_{share} = r_{share} \pi_2(r_{share}) = \frac{\lambda^2 r_{share}}{1 + (1 - \lambda) r_{share}}.$$

Overall probe rate R

Let R be the number of probes transmitted per unit of time

• Rate-based work stealing:

$$R_{steal} = (1 - \lambda)r_{steal}$$

• Rate-based work sharing:

$$R_{share} = r_{share} \pi_2(r_{share}) = \frac{\lambda^2 r_{share}}{1 + (1 - \lambda) r_{share}}.$$

• Traditional work sharing:

$$R_{trad,share} = \lambda^2 \left(1 + \sum_{i=1}^{L_p - 1} \lambda^i \right) = \lambda^2 \frac{1 - \lambda^{L_p}}{1 - \lambda}$$

Given λ and some R

Given λ and some R

• Rate-based strategies:

set r_{share} and r_{steal} such that $R_{steal} = R_{share} = R$

Given λ and some R

• Rate-based strategies:

set r_{share} and r_{steal} such that $R_{steal} = R_{share} = R$

• Work sharing strategies:

set
$$r_{share} = \frac{1 - \lambda^{L_p}}{(1 - \lambda)\lambda^{L_p}}$$
 such that $R_{share} = R_{trad,share}$

Given λ and some R

• Rate-based strategies:

set r_{share} and r_{steal} such that $R_{steal} = R_{share} = R$

• Work sharing strategies:

set
$$r_{share} = \frac{1-\lambda^{L_p}}{(1-\lambda)\lambda^{L_p}}$$
 such that $R_{share} = R_{trad,share}$

Remarkably,

$$\pi_{i+1}(r_{share}) = \lambda^{1+(1+L_p)i},$$

so if overall probe rate is matched, we get the same limiting queue length distribution. Same holds for work rate-based versus traditional stealing.
Rate-based work stealing versus sharing

Theorem (Minnebo, VH. 2014): The mean response time D of a job under sharing equals

$$D_{share} = \frac{\lambda}{(1-\lambda)(\lambda+R)},$$

for $R < \lambda^2/(1-\lambda)$ and $D_{share} = 1$ for $R \ge \lambda^2/(1-\lambda)$. Under stealing we get

$$D_{steal} = \frac{1+R}{1-\lambda+R}.$$

Hence, given R sharing is best if and only if

$$\lambda < \frac{\sqrt{(1+R)^2 + 4(1+R)} - (1+R)}{2}$$

Further, for any R, sharing outperforms stealing for all $\lambda < \phi - 1$, where $\phi = (1 + \sqrt{5})/2$ is the golden ratio.

Rate-based work stealing versus sharing

Exponential job sizes (mean 1): boundary at $R = \max(\frac{\lambda^2}{1-\lambda} - 1, 0)$

YEQT 2018

Randomized work stealing/sharing

Finite system accuracy (overall probe rate R=1)

 \Rightarrow Can be further improved by refined mean field approximation

YEQT 2018

Randomized work stealing/sharing

December 4, 2018

18 / 38

Finite system accuracy (overall probe rate R=1)

 \Rightarrow Good prediction of border between 2 regions for N = 100 servers

YEQT 2018

Randomized work stealing/sharing

December 4, 2018 19 / 38

Outline

- 2 Traditional strategies
- 3 Rate-based Strategies
- 4 Global attraction
- 5 Non-exponential job sizes

• Traditional work sharing: set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) + \lambda s_1(t)(1 - s_1(t)^{L_p}) - (s_1(t) - s_2(t))$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))s_1(t)^{L_p} - (s_i(t) - s_{i+1}(t))$$

for $i \geq 2$.

• Traditional work sharing: set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) + \lambda s_1(t)(1 - s_1(t)^{L_p}) - (s_1(t) - s_2(t))$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))s_1(t)^{L_p} - (s_i(t) - s_{i+1}(t))$$
for $i \ge 2$.

 $\bullet\,$ To simplify matters, let's truncate the queues at length B

• Traditional work sharing: set of ODEs:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) + \lambda s_1(t)(1 - s_1(t)^{L_p}) - (s_1(t) - s_2(t))$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))s_1(t)^{L_p} - (s_i(t) - s_{i+1}(t))$$
for $i \ge 2$.

• To simplify matters, let's truncate the queues at length B \Rightarrow Same set of ODEs applies, but with $s_{B+1}(t) = 0$

• Global attraction: show $\lim_{t\to\infty} s(t) = \pi$, the unique fixed point, for any initial $s(0) \in \{(s_1, \ldots, s_B) | 1 \ge s_1 \ge \ldots \ge s_B \ge 0\}$

- Global attraction: show $\lim_{t\to\infty} s(t) = \pi$, the unique fixed point, for any initial $s(0) \in \{(s_1, \ldots, s_B) | 1 \ge s_1 \ge \ldots \ge s_B \ge 0\}$
- Componentwise partial order: $s \leq \tilde{s}$ with $s = (s_1, \ldots, s_B)$ and $\tilde{s} = (\tilde{s}_1, \ldots, \tilde{s}_B)$ if $s_i \leq \tilde{s}_i$ for all i

- Global attraction: show $\lim_{t\to\infty} s(t) = \pi$, the unique fixed point, for any initial $s(0) \in \{(s_1, \ldots, s_B) | 1 \ge s_1 \ge \ldots \ge s_B \ge 0\}$
- Componentwise partial order: $s \leq \tilde{s}$ with $s = (s_1, \ldots, s_B)$ and $\tilde{s} = (\tilde{s}_1, \ldots, \tilde{s}_B)$ if $s_i \leq \tilde{s}_i$ for all i
- Let s(t) and $\tilde{s}(t)$ be the unique solution of the set of ODEs with s(0) = s and $\tilde{s}(0) = \tilde{s}$, respectively.

- Global attraction: show $\lim_{t\to\infty} s(t) = \pi$, the unique fixed point, for any initial $s(0) \in \{(s_1, \ldots, s_B) | 1 \ge s_1 \ge \ldots \ge s_B \ge 0\}$
- Componentwise partial order: $s \leq \tilde{s}$ with $s = (s_1, \ldots, s_B)$ and $\tilde{s} = (\tilde{s}_1, \ldots, \tilde{s}_B)$ if $s_i \leq \tilde{s}_i$ for all i
- Let s(t) and $\tilde{s}(t)$ be the unique solution of the set of ODEs with s(0) = s and $\tilde{s}(0) = \tilde{s}$, respectively.
- Let $s_E(t)$ and $s_F(t)$ be the unique solution of the set of ODEs with $s_E(0) = (0, \ldots, 0)$ and $s_F(0) = (0, \ldots, 0, 1)$, respectively.

• STEP 1: show that partial order is preserved over time, that is,

 $s(t) \leq \tilde{s}(t)$ for all $t \geq 0$ if $s(0) \leq \tilde{s}(0)$

• STEP 1: show that partial order is preserved over time, that is,

 $s(t) \leq \tilde{s}(t)$ for all $t \geq 0$ if $s(0) \leq \tilde{s}(0)$

• How: verify that the drift of $s_i(t)$ is increasing in $s_j(t)$ for $j \neq i$

• STEP 1: show that partial order is preserved over time, that is,

$$s(t) \leq \tilde{s}(t)$$
 for all $t \geq 0$ if $s(0) \leq \tilde{s}(0)$

- How: verify that the drift of $s_i(t)$ is increasing in $s_j(t)$ for $j \neq i$
- Let's do this:

$$\frac{ds_1(t)}{dt} = \lambda(1 - s_1(t)) + \lambda s_1(t)(1 - s_1(t)^{L_p}) - (s_1(t) - s_2(t))$$
$$\frac{ds_i(t)}{dt} = \lambda(s_{i-1}(t) - s_i(t))s_1(t)^{L_p} - (s_i(t) - s_{i+1}(t))$$

for $i \geq 2$.

December 4, 2018 23 / 38

• STEP 2: Show that $s_E(s) \leq s_E(t)$ and $s_F(s) \geq s_F(t)$ for 0 < s < t

- STEP 2: Show that $s_E(s) \leq s_E(t)$ and $s_F(s) \geq s_F(t)$ for 0 < s < t
- How: immediate by Step 1 as

$$(0,\ldots,0) \leq s_E(t-s)$$
 implies that $s_E(s) \leq s_E(t)$

and

$$(0,\ldots,1) \ge s_F(t-s)$$
 implies that $s_F(s) \ge s_F(t)$

- STEP 2: Show that $s_E(s) \leq s_E(t)$ and $s_F(s) \geq s_F(t)$ for 0 < s < t
- How: immediate by Step 1 as

$$(0,\ldots,0) \leq s_E(t-s)$$
 implies that $s_E(s) \leq s_E(t)$

and

$$(0,\ldots,1) \ge s_F(t-s)$$
 implies that $s_F(s) \ge s_F(t)$

 \Rightarrow As we are working in subset of $[0,1]^B,$ one can check that Step 2 implies

$$\lim_{t \to \infty} s_E(t) = \lim_{t \to \infty} s_F(t) = \pi,$$

where π is the unique fixed point

• STEP 3: Argue that

$$\lim_{t \to \infty} s_E(t) = \lim_{t \to \infty} s_F(t) = \pi,$$

implies global attraction due to Step 1

• STEP 3: Argue that

$$\lim_{t \to \infty} s_E(t) = \lim_{t \to \infty} s_F(t) = \pi,$$

implies global attraction due to Step 1

• How: for any $s = (s_1, \ldots, s_B)$ we have $s_E(0) \le s \le s_F(0)$

• STEP 3: Argue that

$$\lim_{t \to \infty} s_E(t) = \lim_{t \to \infty} s_F(t) = \pi,$$

implies global attraction due to Step 1

- How: for any $s = (s_1, \ldots, s_B)$ we have $s_E(0) \le s \le s_F(0)$
- Hence, by Step 1 we have for all t

$$s_E(t) \le s(t) \le s_F(t),$$

Taking limits yields global attraction!

25 / 38

Outline

- 2 Traditional strategies
- 3 Rate-based Strategies
- 4 Global attraction
- **(5)** Non-exponential job sizes

• Characterized by $n \times n$ subgenerator S and stochastic vector $\alpha = (\alpha_1, \dots, \alpha_n)$

- Characterized by $n \times n$ subgenerator S and stochastic vector $\alpha = (\alpha_1, \dots, \alpha_n)$
- cdf $H(y) = 1 \alpha e^{Sy} \underline{1}$, where $\underline{1}$ is a vector of ones
- pdf $h(y) = \alpha e^{Sy} \mu$, where $\mu = -S\underline{1}$

27 / 38

- Characterized by $n \times n$ subgenerator S and stochastic vector $\alpha = (\alpha_1, \dots, \alpha_n)$
- cdf $H(y) = 1 \alpha e^{Sy} \underline{1}$, where $\underline{1}$ is a vector of ones
- pdf $h(y) = \alpha e^{Sy} \mu$, where $\mu = -S\underline{1}$
- α_i is the probability that a job starts service in phase *i*

- Characterized by $n \times n$ subgenerator S and stochastic vector $\alpha = (\alpha_1, \dots, \alpha_n)$
- cdf $H(y) = 1 \alpha e^{Sy} \underline{1}$, where $\underline{1}$ is a vector of ones
- pdf $h(y) = \alpha e^{Sy} \mu$, where $\mu = -S\underline{1}$
- α_i is the probability that a job starts service in phase *i*
- entry (i, j) of S, for $i \neq j$, is the rate at which the job in service changes its service phase from i to j

- Characterized by $n \times n$ subgenerator S and stochastic vector $\alpha = (\alpha_1, \dots, \alpha_n)$
- cdf $H(y) = 1 \alpha e^{Sy} \underline{1}$, where $\underline{1}$ is a vector of ones
- pdf $h(y) = \alpha e^{Sy} \mu$, where $\mu = -S\underline{1}$
- α_i is the probability that a job starts service in phase *i*
- entry (i, j) of S, for $i \neq j$, is the rate at which the job in service changes its service phase from i to j
- μ_i is the rate at which a job in phase *i* completes service

- Characterized by $n \times n$ subgenerator S and stochastic vector $\alpha = (\alpha_1, \dots, \alpha_n)$
- cdf $H(y) = 1 \alpha e^{Sy} \underline{1}$, where $\underline{1}$ is a vector of ones
- pdf $h(y) = \alpha e^{Sy} \mu$, where $\mu = -S\underline{1}$
- α_i is the probability that a job starts service in phase *i*
- entry (i, j) of S, for $i \neq j$, is the rate at which the job in service changes its service phase from i to j
- μ_i is the rate at which a job in phase *i* completes service

 \Rightarrow PH distributions are dense in the class of probability distributions on $[0, \infty)$ and many fitting tools exist

Rate-based: mean field model for PH job sizes

• $f_{\ell,i}(t)$: fraction of servers in phase *i* containing exactly ℓ jobs at time *t* and let $\vec{f}_{\ell}(t) = (f_{\ell,1}(t), \dots, f_{\ell,n}(t))$

Rate-based: mean field model for PH job sizes

- $f_{\ell,i}(t)$: fraction of servers in phase *i* containing exactly ℓ jobs at time *t* and let $\vec{f}_{\ell}(t) = (f_{\ell,1}(t), \dots, f_{\ell,n}(t))$
- Set of ODEs:

$$\begin{aligned} \frac{d}{dt}\vec{f}_{\ell}(t) &= \lambda \vec{f}_{\ell-1}(t)\mathbf{1}[\ell > 1] - \lambda \vec{f}_{\ell}(t) + \lambda f_{0}(t)\alpha \mathbf{1}[\ell = 1] \\ &+ \vec{f}_{\ell+1}(t)\mu\alpha + rf_{0}(t)(\vec{f}_{\ell+1}(t) - 1[\ell > 1]\vec{f}_{\ell}(t)) \\ &+ \vec{f}_{\ell}(t)S + \mathbf{1}[\ell = 1]rf_{0}(t)\left(1 - f_{0}(t) - \vec{f}_{1}(t)\underline{1}\right)\alpha ,\end{aligned}$$

for $\ell \geq 1$ and

$$\frac{d}{dt}f_0(t) = -\lambda f_0(t) + \vec{f_1}(t)\mu - rf_0(t)\left(1 - f_0(t) - \vec{f_1}(t)\underline{1}\right).$$

• There is a single server, infinite waiting room and service times follow a phase-type distribution (α, S) with mean 1. Customers are served in FCFS order.

- There is a single server, infinite waiting room and service times follow a phase-type distribution (α, S) with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ when the server is busy and at rate λ_0 when the server is idle.

- There is a single server, infinite waiting room and service times follow a phase-type distribution (α, S) with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ when the server is busy and at rate λ_0 when the server is idle.
- Negative arrivals occur at rate $(1 \lambda)r$ when the queue length exceeds one and reduce the queue length by one (by removing a customer from the back of the queue).

- There is a single server, infinite waiting room and service times follow a phase-type distribution (α, S) with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ when the server is busy and at rate λ_0 when the server is idle.
- Negative arrivals occur at rate $(1 \lambda)r$ when the queue length exceeds one and reduce the queue length by one (by removing a customer from the back of the queue).
- The arrival rate λ₀ is such that the probability of having an idle queue is 1 λ and thus depends on λ, r and (α, S) only.

Fixed point for rate-based strategies with PH job sizes

Quasi-birth-death (QBD) Markov chain:

$$Q(r) = \begin{bmatrix} -\lambda_0(r) & \lambda_0(r)\alpha & & \\ \mu & S - \lambda I & A_1 & \\ & A_{-1}(r) & A_0(r) & A_1 & \\ & & \ddots & \ddots & \ddots \end{bmatrix},$$

with

$$A_{-1}(r) = \mu \alpha + (1 - \lambda)rI,$$

$$A_{0}(r) = S - \lambda I + (1 - \lambda)rI,$$

$$A_{1} = \lambda I.$$

Fixed point for rate-based strategies with PH job sizes

Stationary distribution:

$$\pi_{\ell}(r) = \lambda \frac{\alpha(\lambda(I - G(r)) - S)^{-1} R(r)^{\ell - 1}}{\alpha(\lambda(I - G(r)) - S)^{-1} (I - R(r))^{-1} \underline{1}},$$
(1)

and $\pi_0(r) = 1 - \lambda$, with

$$A_1 + R(r)A_0(r) + R(r)^2 A_{-1}(r) = 0$$

and $\lambda G(r) = R(r)A_{-1}(r)$

Theorem (VH. 2018): The steady state probability vector given by (1) is the unique fixed point ζ of the set of ODEs with $\zeta_0 + \sum_{\ell > 1} \vec{\zeta_\ell \underline{1}} = 1$.
Theorem (VH. 2018): Given (α, S) , λ and R > 0, work sharing achieves a lower mean response time than stealing if and only if

$$1 - \lambda > \pi_{2+} (R/(1-\lambda))\underline{1}.$$

$$(2)$$

\Rightarrow Suffices to solve single QBD to decide

Theorem (VH. 2018): Given (α, S) and λ there exists a R^* such that work sharing is best if and only if $R > R^*$.

Theorem (VH. 2018): Given (α, S) and R there exists a λ^* such that work sharing is best if and only if $\lambda < \lambda^*$.

Rate-based stealing vs sharing with PH job sizes

 \Rightarrow stealing benefits from more *variability* in job sizes

YEQT 2018

Randomized work stealing/sharing

Rate-based stealing vs sharing with PH job sizes

 \Rightarrow boundary depends on higher moments, as expected

YEQT 2018

Randomized work stealing/sharing

December 4, 2018

General boundaries for PH job sizes

Theorem (VH. 2018): For any (α, S) , work sharing is best if

$$\lambda < \frac{\max(1, \sqrt{r_{overall}(r_{overall} + 4)} - r_{overall})}{2}$$

General boundaries for PH job sizes

Conjectures:

\Rightarrow Have weaker bounds and limit results for r tending to zero

YEQT 2018

Randomized work stealing/sharing

December 4, 2018

36 / 38

How to prove the general stealing bound?

Consider the following queueing system:

• There is a single server, infinite waiting room and service times have a general distribution with mean 1. Customers are served in FCFS order.

How to prove the general stealing bound?

Consider the following queueing system:

- There is a single server, infinite waiting room and service times have a general distribution with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ_+ .

37 / 38

Consider the following queueing system:

- There is a single server, infinite waiting room and service times have a general distribution with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ_+ .
- Negative arrivals occur at rate λ_{-} and remove a pending customer, if present.

Consider the following queueing system:

- There is a single server, infinite waiting room and service times have a general distribution with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ_+ .
- Negative arrivals occur at rate λ_{-} and remove a pending customer, if present.
- When the server becomes idle, we instantaneously insert a new job.

Consider the following queueing system:

- There is a single server, infinite waiting room and service times have a general distribution with mean 1. Customers are served in FCFS order.
- Arrivals occur according to a Poisson process with rate λ_+ .
- Negative arrivals occur at rate λ_{-} and remove a pending customer, if present.
- When the server becomes idle, we instantaneously insert a new job.

 \Rightarrow Show that the probability to have exactly one job in the queue is maximized when the job length is deterministic! Easy when $\lambda_{-} = 0$ (via P-K formula and Jensen's inequality)

Some references

- D.L. Eager, E.D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated and sender-initiated adaptive load sharing. Perform. Eval., 6(1):53–68, 1986
- M. Mitzenmacher. Analyses of load stealing models based on families of differential equations. Theory of Computing Systems, 34:77–98, 2001
- W. Minnebo and B. Van Houdt. A fair comparison of pull and push strategies in large distributed networks. IEEE/ACM Transactions on Networking, 22:996–1006, 2014
- B. Van Houdt, Randomized Work Stealing versus Sharing in Large-scale Systems with Non-exponential Job Sizes, https://arxiv.org/abs/1810.13186, 2018