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Setting

Set of N servers, each subject to local Poisson arrivals (rate λ)

Inefficient: as servers may be idle while others have pending jobs

Redistribute the work/jobs

Strategies:

1 Work stealing (pull): lightly-loaded servers attempt to steal work

2 Work sharing (push): heavily-loaded servers attempt to share work
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Traditional Strategies

Randomized Strategies [Eager, Lazowska & Zahorjan 1984]:

1 Work stealing: Whenever a server becomes idle, it probes up to Lp

servers at random to steal a job

2 Work sharing: Whenever a job arrives in a busy server, it probes

up to Lp servers at random to transfer the incoming job
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Work sharing: mean field model for expo job sizes

An arriving job probes up to Lp servers at random for idle server

si(t): fraction of queues containing at least i jobs at time t

Set of ODEs:

ds1(t)

dt
= λ(1− s1(t)) + λs1(t)(1− s1(t)Lp)

− (s1(t)− s2(t))
dsi(t)

dt
= λ(si−1(t)− si(t))s1(t)Lp − (si(t)− si+1(t))

for i ≥ 2.

Unique fixed point: πi+1 = λ1+(Lp+1)i for i ≥ 0.
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Work stealing: mean field model for expo job sizes

Server that becomes idle probes up to Lp servers at random

si(t): fraction of queues containing at least i jobs at time t

Set of ODEs:

ds1(t)

dt
= λ(1− s1(t)) − (s1(t)− s2(t))(1− s2(t))Lp

dsi(t)

dt
= λ(si−1(t)− si(t)) − (si(t)− si+1(t))

− (si(t)−si+1(t))
s2(t)

(s1(t)− s2(t))(1− (1− s2(t))Lp) ,

for i ≥ 2, where dsi(t)
dt = λ(si−1(t)− si(t)) if s2(t) = 0 and i ≥ 2.

Unique fixed point: π2 root of

g(x) = λ(1− λ)− (λ− x)(1− x)Lp = 0,
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Work stealing versus sharing (aka pull versus push)

Let’s compare, right?

NO!
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⇒ Communication overhead depends on the load and is not the same
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Rate-based strategies

Randomized Strategies [Minnebo, VH 2014]:

1 Work stealing: Whenever a server is idle, it randomly probes at

rate rsteal to steal a job

2 Work sharing: Whenever a server has pending jobs, it randomly

probes at rate rshare to transfer a pending job

Aren’t traditional strategies better? NO!
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Rate-based: mean field model for expo job sizes

Single mean field model for stealing/sharing

si(t): fraction of queues containing at least i jobs at time t

Set of ODEs:

d

dt
s1(t) = λ(1− s1(t)) − (s1(t)− s2(t)) + r(1− s1(t))s2(t) ,

d

dt
si(t) = λ(si−1(t)− si(t)) − (si(t)− si+1(t))

− r(1− s1(t)))(si(t)− si+1(t)) ,

for i ≥ 2.

Unique fixed point: for i ≥ 1

πi(r) = λ

(
λ

1 + (1− λ)r

)i−1
.
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Overall probe rate R

Let R be the number of probes transmitted per unit of time

Rate-based work stealing:

Rsteal = (1− λ)rsteal

Rate-based work sharing:

Rshare = rshareπ2(rshare) =
λ2rshare

1 + (1− λ)rshare
.

Traditional work sharing:

Rtrad,share = λ2

1 +

Lp−1∑
i=1

λi

 = λ2
1− λLp

1− λ
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Comparing strategies

Given λ and some R

Rate-based strategies:

set rshare and rsteal such that Rsteal = Rshare = R

Work sharing strategies:

set rshare = 1−λLp

(1−λ)λLp
such that Rshare = Rtrad,share

Remarkably,
πi+1(rshare) = λ1+(1+Lp)i,

so if overall probe rate is matched, we get the same limiting queue
length distribution. Same holds for work rate-based versus traditional
stealing.
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Rate-based work stealing versus sharing

Theorem (Minnebo, VH. 2014): The mean response time D of a job
under sharing equals

Dshare =
λ

(1− λ)(λ+R)
,

for R < λ2/(1− λ) and Dshare = 1 for R ≥ λ2/(1− λ). Under stealing
we get

Dsteal =
1 +R

1− λ+R
.

Hence, given R sharing is best if and only if

λ <

√
(1 +R)2 + 4(1 +R)− (1 +R)

2
.

Further, for any R, sharing outperforms stealing for all λ < φ− 1,
where φ = (1 +

√
5)/2 is the golden ratio.
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Rate-based work stealing versus sharing
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Finite system accuracy (overall probe rate R=1)
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⇒ Can be further improved by refined mean field approximation
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Finite system accuracy (overall probe rate R=1)
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⇒ Good prediction of border between 2 regions for N = 100 servers

YEQT 2018 Randomized work stealing/sharing December 4, 2018 19 / 38



Outline

1 Setting

2 Traditional strategies

3 Rate-based Strategies

4 Global attraction

5 Non-exponential job sizes

YEQT 2018 Randomized work stealing/sharing December 4, 2018 20 / 38



Simple proof by monotonicity

Traditional work sharing: set of ODEs:

ds1(t)

dt
= λ(1− s1(t)) + λs1(t)(1− s1(t)Lp)

− (s1(t)− s2(t))
dsi(t)

dt
= λ(si−1(t)− si(t))s1(t)Lp − (si(t)− si+1(t))

for i ≥ 2.

To simplify matters, let’s truncate the queues at length B

⇒ Same set of ODEs applies, but with sB+1(t) = 0
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Simple proof by monotonicity

Global attraction: show limt→∞ s(t) = π, the unique fixed point,
for any initial s(0) ∈ {(s1, . . . , sB)|1 ≥ s1 ≥ . . . ≥ sB ≥ 0}

Componentwise partial order: s ≤ s̃ with s = (s1, . . . , sB) and
s̃ = (s̃1, . . . , s̃B) if si ≤ s̃i for all i

Let s(t) and s̃(t) be the unique solution of the set of ODEs with
s(0) = s and s̃(0) = s̃, respectively.

Let sE(t) and sF (t) be the unique solution of the set of ODEs with
sE(0) = (0, . . . , 0) and sF (0) = (0, . . . , 0, 1), respectively.
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Simple proof by monotonicity: Step 1

STEP 1: show that partial order is preserved over time, that is,

s(t) ≤ s̃(t) for all t ≥ 0 if s(0) ≤ s̃(0)

How: verify that the drift of si(t) is increasing in sj(t) for j 6= i

Let’s do this:

ds1(t)

dt
= λ(1− s1(t)) + λs1(t)(1− s1(t)Lp)

− (s1(t)− s2(t))
dsi(t)

dt
= λ(si−1(t)− si(t))s1(t)Lp − (si(t)− si+1(t))

for i ≥ 2.
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Simple proof by monotonicity: Step 2

STEP 2: Show that sE(s) ≤ sE(t) and sF (s) ≥ sF (t) for 0 < s < t

How: immediate by Step 1 as

(0, . . . , 0) ≤ sE(t− s) implies that sE(s) ≤ sE(t)

and
(0, . . . , 1) ≥ sF (t− s) implies that sF (s) ≥ sF (t)

⇒ As we are working in subset of [0, 1]B, one can check that Step 2
implies

lim
t→∞

sE(t) = lim
t→∞

sF (t) = π,

where π is the unique fixed point
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Simple proof by monotonicity: Step 3

STEP 3: Argue that

lim
t→∞

sE(t) = lim
t→∞

sF (t) = π,

implies global attraction due to Step 1

How: for any s = (s1, . . . , sB) we have sE(0) ≤ s ≤ sF (0)

Hence, by Step 1 we have for all t

sE(t) ≤ s(t) ≤ sF (t),

Taking limits yields global attraction!
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Phase-type (PH) distributions

Characterized by n× n subgenerator S and stochastic vector
α = (α1, . . . , αn)

cdf H(y) = 1− αeSy1, where 1 is a vector of ones

pdf h(y) = αeSyµ, where µ = −S1

αi is the probability that a job starts service in phase i

entry (i, j) of S, for i 6= j, is the rate at which the job in service
changes its service phase from i to j

µi is the rate at which a job in phase i completes service

⇒ PH distributions are dense in the class of probability distributions
on [0,∞) and many fitting tools exist
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Rate-based: mean field model for PH job sizes

f`,i(t): fraction of servers in phase i containing exactly ` jobs at

time t and let ~f`(t) = (f`,1(t), . . . , f`,n(t))

Set of ODEs:

d

dt
~f`(t) = λ~f`−1(t)1[` > 1]− λ~f`(t) + λf0(t)α1[` = 1]

+ ~f`+1(t)µα + rf0(t)(~f`+1(t)− 1[` > 1]~f`(t))

+ ~f`(t)S + 1[` = 1]rf0(t)
(

1− f0(t)− ~f1(t)1
)
α ,

for ` ≥ 1 and

d

dt
f0(t) = −λf0(t) + ~f1(t)µ − rf0(t)

(
1− f0(t)− ~f1(t)1

)
.
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Fixed point for rate-based strategies with PH job sizes

The queueing system has the following characteristics:

There is a single server, infinite waiting room and service times
follow a phase-type distribution (α, S) with mean 1. Customers
are served in FCFS order.

Arrivals occur according to a Poisson process with rate λ when the
server is busy and at rate λ0 when the server is idle.

Negative arrivals occur at rate (1− λ)r when the queue length
exceeds one and reduce the queue length by one (by removing a
customer from the back of the queue).

The arrival rate λ0 is such that the probability of having an idle
queue is 1− λ and thus depends on λ, r and (α, S) only.
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Fixed point for rate-based strategies with PH job sizes

Quasi-birth-death (QBD) Markov chain:

Q(r) =


−λ0(r) λ0(r)α
µ S − λI A1

A−1(r) A0(r) A1

. . .
. . .

. . .

 ,
with

A−1(r) = µα + (1− λ)rI ,

A0(r) = S − λI + (1− λ)rI ,

A1 = λI .
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Fixed point for rate-based strategies with PH job sizes

Stationary distribution:

π`(r) = λ
α(λ(I −G(r))− S)−1R(r)`−1

α(λ(I −G(r))− S)−1(I −R(r))−11
, (1)

and π0(r) = 1− λ, with

A1 +R(r)A0(r) +R(r)2A−1(r) = 0

and λG(r) = R(r)A−1(r)

Theorem (VH. 2018): The steady state probability vector given by (1)
is the unique fixed point ζ of the set of ODEs with ζ0 +

∑
`≥1

~ζ`1 = 1.
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Rate-based stealing vs sharing with PH job sizes

Theorem (VH. 2018): Given (α, S), λ and R > 0, work sharing
achieves a lower mean response time than stealing if and only if

1− λ > π2+(R/(1− λ))1. (2)

⇒ Suffices to solve single QBD to decide

Theorem (VH. 2018): Given (α, S) and λ there exists a R∗ such that
work sharing is best if and only if R > R∗.

Theorem (VH. 2018): Given (α, S) and R there exists a λ∗ such that
work sharing is best if and only if λ < λ∗.
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Rate-based stealing vs sharing with PH job sizes
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Sharing best

SCV = 1/25
SCV = 1/5
SCV = 1
SCV = 5, f = 1/2
SCV = 25, f = 1/2

⇒ stealing benefits from more variability in job sizes
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Rate-based stealing vs sharing with PH job sizes
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f = 7/8, SCV = 10
f = 3/4, SCV = 10
f = 1/2, SCV = 10
f = 1/4, SCV = 10
f = 1/8, SCV = 10
SCV = 1

⇒ boundary depends on higher moments, as expected
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General boundaries for PH job sizes
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General Sharing Bound

Theorem (VH. 2018): For any (α, S), work sharing is best if

λ <
max(1,

√
roverall(roverall + 4)− roverall)

2
.
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General boundaries for PH job sizes

Conjectures:
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General sharing bound
Exponential bound
Deterministic bound

⇒ Have weaker bounds and limit results for r tending to zero
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How to prove the general stealing bound?

Consider the following queueing system:

There is a single server, infinite waiting room and service times
have a general distribution with mean 1. Customers are served in
FCFS order.

Arrivals occur according to a Poisson process with rate λ+.

Negative arrivals occur at rate λ− and remove a pending
customer, if present.

When the server becomes idle, we instantaneously insert a new job.

⇒ Show that the probability to have exactly one job in the queue is
maximized when the job length is deterministic!
Easy when λ− = 0 (via P-K formula and Jensen’s inequality)
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