Scheduling for Multiclass Many-server Queues with
Abandonment: the cu /0 Rule and its Generalizations

Nahum Shimkin

Technion — Israel Institute of Technology

YEQT 2018 - Young European Queueing Theorists XII
December 3-4, Toulouse, France

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 1/25

@ The first part is joint work with Chanit Giat and Rami Atar
(Technion).

@ The second part is joint work with Zhenghua Long, Hailun
Zhang and Jiheng Zhang (HKUST)

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 2/25

THE BASIC MODEL

Ay ——— 111, xn,

Consider a queueing systems with:

n identical servers

e Finite set Z = {1...I} of customer classes

@ Poisson arrivals, with rates \;, 1 € Z

o Exponential service times, with means p;

@ Impatient customers: exponential patience time, with mean 6;

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 3/25

THE BASIC MODEL

Ay ——— 111, xn,

Consider a queueing systems with:

@ n identical servers
Finite set Z = {1...1} of customer classes
Poisson arrivals, with rates \;, 1 € Z
Exponential service times, with means p;

Impatient customers: exponential patience time, with mean 6;

We focus here on the case of an overloaded system:

Zﬁ>1

P

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 3/25

COST PARAMETERS

Ay —— 11l My xnp

o Waiting cost parameter c;

Our cost function:

T I
J(T) = %E/O ZciQi(t)dt

(for large T').

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 4/25

What about abandonment penalties?

=] & = E DA
Nahum Shimkin, EE Technion Server Scheduling with Anandonment

What about abandonment penalties?

Consider the cost function

T) = %E/O Z ciQi(t) + idN{*™" (¢))dt

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 5/25

What about abandonment penalties?

Consider the cost function

1 Td
II) = 7B [3 TQule) + dN)
=1

Since patience is exponentially-distributed,
E(dN{*" (1)) = 0;Qi(t) ,

and this cost reduces to the previous one with ¢; < ¢; + v;0;.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 5/25

PRIORITY RULES

@ For the single-server queue with no abandonment, the optimal
scheduling policy is the celebrated cp index rule [Cox & Smith
1951, etc.]

@ For the same queue with convex delay costs, the generalized cpu rule is
asymptotically optimal under the heavy-traffic diffusion regime [Van
Mieghem 1995].

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 6/25

PRIORITY RULES

@ For the single-server queue with no abandonment, the optimal
scheduling policy is the celebrated cp index rule [Cox & Smith
1951, etc.]

@ For the same queue with convex delay costs, the generalized cpu rule is
asymptotically optimal under the heavy-traffic diffusion regime [Van
Mieghem 1995].

@ We wish to find a simple scheduling policy, which is close to optimal
under suitable conditions.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 6/25

FLUID SCALING

@ We consider the case of many servers, namely n — oo.
o Accordingly, we let A" = n\;.
Wi, 0; and the cost parameters are not scaled.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 7/25

FLUID SCALING

@ We consider the case of many servers, namely n — oo.
o Accordingly, we let A" = n\;.
Wi, 0; and the cost parameters are not scaled.

The scaled cost function:

1 (T
JUT) = ﬁE/O > i)t n, T — oo
=1

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 7/25

FLUID SCALING

@ We consider the case of many servers, namely n — oo.
o Accordingly, we let A" = n\;.
Wi, 0; and the cost parameters are not scaled.

The scaled cost function:

@ Many-server fluid approximations of queueing systems with
abandonments were studied, among others, by [Mandelbaym, Massey
& Reiman 1998], [Whitt 2004] (M /M /n + M).

[Whitt 2006] suggested a heuristic model for the G/GI/n + G queue.

@ Control problems in the queueing regime were consdiered for example
in [Bassamboo, Harrison & Zeevi 2007], who considered suboptimal
routing and admission control policies that track the solution of the
fluid model.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 7/25

OUR PLAN

@ Use a simplified fluid model to get some ideas for effective
policies.

e Translate these policies to the original (stochastic) system.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 8/25

THE FLUID MODEL

@ Let us scale the arrival, departure and abandonment processes
by % assume that they are stationary, and focus on their rates.

We arrive heuristically at the following static fluid model:
&

Xz

;{1 1 1
0

A Wy xz

where >, z; < 1.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 9/25

THE FLUID MODEL

@ Let us scale the arrival, departure and abandonment processes
by % assume that they are stationary, and focus on their rates.
We arrive heuristically at the following static fluid model:

6
21 H X7y
o
h— Hrxzp
where >, z; < 1.
e Flow balance equations (with fixed queue lengths):

Ai = zipti + 0

if \; > z;u;, otherwise g; = 0.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 9/25

THE FLUID LP PROBLEM

@ Our optiimization problem:

st N =iz +0iqi; %20, ,2<1; ¢>0 = ZiS%

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 10/25

THE FLUID LP PROBLEM

@ Our optiimization problem:

st N =iz +0iqi; %20, ,2<1; ¢>0 = ZiS%

@ Substituting for ¢;:

;Cz‘%’ chz/\z_g—zmz’ = (---)—Zzz-cgji

% %

@ The solution now is obvious...

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 10 /25

THE FLUID SOLUTION

@ Renumber the classes in decreasing order of the index

Cifli

0;

o = = £ DA
Nahum Shimkin, EE Technion Server Scheduling with Anandonment

THE FLUID SOLUTION

Cifli

@ Renumber the classes in decreasing order of the index ——

0;

@ Set
(zl,...,z[):(%,...,2’;:1,216,0,...,0)
where
k = min{j : {f‘j>1}, o=1-0"1z
This yields
(g1, 1) = (0,0, > 0,352, 31)

Nahum Shimkin, EE Technion Server Scheduling with Anandonment

December 4, 2018

11/25

THE FULL INDEX

@ Substituting ¢; + ¢; + v;0; gives

cp (et c

@ Clearly, priority is given to customers with high waiting cost,
long patience, high abandonment cost, and high service rate.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 12/25

THE FULL INDEX

@ Substituting ¢; + ¢; + v;0; gives

eu (et1O)u _ e

@ Clearly, priority is given to customers with high waiting cost,
long patience, high abandonment cost, and high service rate.

@ We note that in [Ayesta, Jacko & Novak 2017], the same index

(with some additional cost terms) is derived using the Whittle
index for restless bandits.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 12/25

Back to the Stochastic System:

The fluid solution suggests at least two different implementations in
the stochastic system:

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 13 /25

Back to the Stochastic System:

The fluid solution suggests at least two different implementations in
the stochastic system:

o Fixed server assignment: Apply a fraction =~ z; of the servers to
queue 7.
Advantages: 4/ Easy to implement ./ General applicability

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 13 /25

Back to the Stochastic System:

The fluid solution suggests at least two different implementations in
the stochastic system:

o Fixed server assignment: Apply a fraction =~ z; of the servers to
queue 7.
Advantages: 4/ Easy to implement ./ General applicability

@ Fix priority rule: Assign servers to waiting customers with the
highest % index. (Preemptive or nonpreemptive.)

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 13 /25

Back to the Stochastic System:

The fluid solution suggests at least two different implementations in
the stochastic system:

o Fixed server assignment: Apply a fraction =~ z; of the servers to
queue 7.
Advantages: 4/ Easy to implement ./ General applicability

@ Fix priority rule: Assign servers to waiting customers with the
highest % index. (Preemptive or nonpreemptive.)
Advantages:

v/ No server idleness
\/ Policy does not depend on ()\;)

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 13 /25

ASYMPTOTIC OPTIMALITY

@ Denote by v* the optimal value of the fluid LP problem.
e Recall that J™7(7) = E™ fo L eQp(t)dt

o Let 70 denote the cu/H |ndex policy (preemptive or
non-preemptive).

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 14 /25

ASYMPTOTIC OPTIMALITY

Denote by v* the optimal value of the fluid LP problem.
Recall that J™7(1) = E™ fo L eQp(t)dt

Let 7¥ denote the cu/@ index policy (preemptive or
non-preemptive).

@ We show first that

lim inf lim inf J™7 (7,,) > v*
T—oo nN—00

for any sequence {m,} of policies (not necessary stationary).

We further show that for 70 the limits exist and equal v*.
[Atar, Giat & Sh. 2010]

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 14 /25

ASYMPTOTIC OPTIMALITY

Denote by v* the optimal value of the fluid LP problem.
Recall that J™7(1) = E™ fo L eQp(t)dt

Let 7¥ denote the cu/@ index policy (preemptive or
non-preemptive).

@ We show first that

lim inf lim inf J™7 (7,,) > v*
T—oo nN—00

for any sequence {m,} of policies (not necessary stationary).

We further show that for 70 the limits exist and equal v*.
[Atar, Giat & Sh. 2010]

@ We repeat the above for the ergodic cost: Limits taken in the
opposite order.
[Atar, Giat & Sh. 2011]

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 14 /25

The Controlled Process and General Policies

@ The processes involved (for given n - omitting the n superscript)
» A;, D;, R;: cumulative number of arrivals / service
completions / reneging on [0, ¢].
» X, Qi, Z;: Number of jobs in the system / queue
(unserved) / service at t; X; = Q; + Z;.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 15/25

The Controlled Process and General Policies

@ The processes involved (for given n - omitting the n superscript)

» A;, D;, R;: cumulative number of arrivals / service
completions / reneging on [0, ¢].
» X, Qi, Z;: Number of jobs in the system / queue
(unserved) / service at t; X; = Q; + Z;.
@ Stochastic Primitives: (A;, D;, R;) ~ Independent Poisson
processes, with rates n)\;, u;, 6;; and 1C's X;(0).

@ Define

Di(t) = Dy /0 Zi(s)ds), Ri(t) = Rl /0 Qi(s)ds)

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 15/25

The Controlled Process and General Policies

@ The processes involved (for given n - omitting the n superscript)

» A;, D;, R;: cumulative number of arrivals / service
completions / reneging on [0, ¢].
» X, Qi, Z;: Number of jobs in the system / queue
(unserved) / service at t; X; = Q; + Z;.
@ Stochastic Primitives: (A;, D;, R;) ~ Independent Poisson
processes, with rates n)\;, u;, 6;; and 1C's X;(0).

@ Define
t

Di(t) = Dy / Zi(s)ds), Ri(t) = Rl /0 Qi(s)ds)

0
item Additional relations:
Xz(t) = XZ(O) + (AZ —D; — Rz)(t)

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 15/25

Policies

@ A policy is now defined implicitly as any tuple
= (D?’R%in’ ?’Zz‘n)
that satisfies the above-mentioned relations.

@ The implied policies include history-dependent, non-stationry
policies — and in fact also non-causal policies.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 16 /25

Policies

@ A policy is now defined implicitly as any tuple
= (D?’R?’in’ ?’Zz?l)
that satisfies the above-mentioned relations.

@ The implied policies include history-dependent, non-stationry
policies — and in fact also non-causal policies.

Fluid scaling:

@ The time-dependent fluid model is obtained as the limit in
n — oo of the scaled processes (1 D7, LRYN) (whenever the
limits exist).

@ When these processes converge to a constant, we obtain the
static model discussed above.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 16 /25

Non-exponential Patience Distributions

o = = £ DA
Nahum Shimkin, EE Technion Server Scheduling with Anandonment

General Patience Distributions

@ Fluid models for (many-server) queues with abandonment and
generally-distributed patience become more complicated, as
they require measure-valued processes todescribe the
(remaining) patience of customers in the queue.

@ The fluid limit of a multiclass queueing system with
G/GI/n+ GI queues under fixed priority policies was analyzed
in Atar, Kaspi & Sh. (2014), extending the approach of Kaspi &
Ramanan (2011), Kang & Ramanan (2012) to the multiclass
case.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 18 /25

General Patience Distributions

@ Fluid models for (many-server) queues with abandonment and
generally-distributed patience become more complicated, as
they require measure-valued processes todescribe the
(remaining) patience of customers in the queue.

@ The fluid limit of a multiclass queueing system with
G/GI/n+ GI queues under fixed priority policies was analyzed
in Atar, Kaspi & Sh. (2014), extending the approach of Kaspi &
Ramanan (2011), Kang & Ramanan (2012) to the multiclass
case.

@ We outline here some initial results in the fluid model that
pertains to the simpler G/M/n + GI case, along with nonlinear
holding costs.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 18 /25

Elements of the Fluid Model

o I is the patience distribution of class ¢, with hazard-rate
function h;.

o X;(t) = Qi(t) + Bi(t) is the number of class-i customers in the
system (# in queue + # in service).

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 19/25

Elements of the Fluid Model

o I is the patience distribution of class ¢, with hazard-rate
function h;.

o X;(t) = Qi(t) + Bi(t) is the number of class-i customers in the
system (# in queue + # in service).

@ Cost function:
1< /7
=33 | [ci@uoyas+m
=1

where C;(q) is a no-decreasing holding cost function, and R;(T")
is the number of abandonmens by time 7.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 19 /25

Steady State Fluid Model

e For a given non-idling scheduling policy 7, suppose Q;(t) — ¢;,
and B;(t) — b; (actually one implies the other).

@ Then O S bz S)\i/,u@-, Ezj‘-:l bl =n, and

F (1=bipi /Xi)
g =)\i/ Ff(s)ds
0

(2

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 20/25

Steady State Fluid Model

e For a given non-idling scheduling policy 7, suppose Q;(t) — ¢;,
and B;(t) — b; (actually one implies the other).

@ Then O S bz S)\i/u@-, 2{21 bl =n, and

Fi_l(l_biﬂi/)\i)
q =)\i/ Ef(s)ds
0

@ Therefore,

Ffl(l—bmz’/)\i)
Jz(bz) = Cz (/\z/ Ff(s)ds) + ”yi()\i — blluz)
0

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 20/25

Fluid Optimization Problem

In terms of the steady state of the fluid model, we obtain the
optimization problem:

I
minimize > " Ji(b;)
=1

I
subject to Zbi <n, (1)
=1
)\.
0<bh; <> i=1,...,1.

I

i

The decision variables b;'s can be intuitively understood as the
amount of service resources that are assigned to class ¢ customers in

the long run.
Nahum Shimkin, EE Technion Server Scheduling with Anandonment

December 4, 2018 21/25

Fluid Optimization Problem: The concave Case

@ Suppose that the holding cost functions C; is concave, and the
patience hazard rate functions h; are nondecreasing. Then the
optimization problem is concave.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 22/25

Fluid Optimization Problem: The concave Case

@ Suppose that the holding cost functions C; is concave, and the
patience hazard rate functions h; are nondecreasing. Then the
optimization problem is concave.

@ In that case the optimal solution is at the extreme point of the
feasible region, which implies a fixed priority rule. In particular,
there exists a fixed priority rule 7* such that each B;(t)
converges to the optimal solution b;.

@ Hence, the average cost Jp(7*) converges to the optimal steady
state solution as 7" — oo.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 22/25

The convex Case

@ Suppose that the holding cost functions C; are convex, and the
patience hazard rate functions h; are nonincreasing. Then the
optimization problem is convex.

@ Assuming further strict convexity and an interior solution, the
KKT optimality conditions for this problem imply

F (1=bipi/N) e
Gl fyt T Fe(s)ds)
hi(F7H (L= bipi/A))
= constant

Pi(bi) : © o yigti + Qg — Bifli

along with). b; = n.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 23/25

The convex Case - Generalized ¢ /6 rule.

@ This motivates us to consider the following dynamic priority
rule:

At time ¢, assign priority in decreasing order of P(B;(t))

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 24 /25

The convex Case - Generalized ¢ /6 rule.

@ This motivates us to consider the following dynamic priority
rule:

At time ¢, assign priority in decreasing order of P(B;(t))

@ Under this policy, each B;(t) converges to the optimal solution
by.

@ Hence, the average cost Jp(7*) converges to the optimal steady
state solution as T' — oc.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 24 /25

A General Priority Rule: The Target-Setting Policy

o Let (b)) be an optimal solution of the steady-state optimization
problem.

@ Consider the time-varying priority rule
At time ¢, assign priority in decreasing order of P;(t)

where

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 25/25

A General Priority Rule: The Target-Setting Policy

o Let (b)) be an optimal solution of the steady-state optimization
problem.

@ Consider the time-varying priority rule

At time ¢, assign priority in decreasing order of P;(t)

where

@ Then similar convergence properties hold, namely B;(t) — bx,
and Jp(m) — J*.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 25/25

