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THE BASIC MODEL

Consider a queueing systems with:

n identical servers

Finite set I = {1 . . . I} of customer classes

Poisson arrivals, with rates λi, i ∈ I
Exponential service times, with means µi
Impatient customers: exponential patience time, with mean θi

We focus here on the case of an overloaded system:∑
i

λi
µi
> 1
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COST PARAMETERS

Waiting cost parameter ci

Our cost function:

J(T ) =
1

T
E
∫ T

0

I∑
i=1

ciQi(t)dt

(for large T ).
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What about abandonment penalties?

Consider the cost function

J(T ) =
1

T
E
∫ T

0

I∑
i=1

(ciQi(t) + γidN
aban
i (t))dt

Since patience is exponentially-distributed,

E(dNaban
t (t)) = θiQi(t) ,

and this cost reduces to the previous one with ci ← ci + γiθi.
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PRIORITY RULES

For the single-server queue with no abandonment, the optimal
scheduling policy is the celebrated cµ index rule [Cox & Smith
1951, etc.]

For the same queue with convex delay costs, the generalized cµ rule is
asymptotically optimal under the heavy-traffic diffusion regime [Van
Mieghem 1995].

We wish to find a simple scheduling policy, which is close to optimal
under suitable conditions.
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FLUID SCALING

We consider the case of many servers, namely n→∞.

Accordingly, we let λni = nλi.
µi, θi and the cost parameters are not scaled.

The scaled cost function:

Jn(T ) =
1

nT
E
∫ T

0

I∑
i=1

ciQ
n
i (t)dt n, T →∞

Many-server fluid approximations of queueing systems with
abandonments were studied, among others, by [Mandelbaym, Massey
& Reiman 1998], [Whitt 2004] (M/M/n+M).
[Whitt 2006] suggested a heuristic model for the G/GI/n+G queue.

Control problems in the queueing regime were consdiered for example
in [Bassamboo, Harrison & Zeevi 2007], who considered suboptimal
routing and admission control policies that track the solution of the
fluid model.
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OUR PLAN

Use a simplified fluid model to get some ideas for effective
policies.

Translate these policies to the original (stochastic) system.
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THE FLUID MODEL

Let us scale the arrival, departure and abandonment processes
by 1

n , assume that they are stationary, and focus on their rates.
We arrive heuristically at the following static fluid model:

where
∑

i zi ≤ 1.

Flow balance equations (with fixed queue lengths):

λi = ziµi + θiqi

if λi ≥ ziµi, otherwise qi = 0.
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THE FLUID LP PROBLEM

Our optiimization problem:

min
{zi}

∑
i

ciqi

s.t. λi = µizi + θiqi; zi ≥ 0,
∑

i zi ≤ 1; qi ≥ 0 =⇒ zi ≤ λi
µi

Substituting for qi:∑
i

ciqi =
∑
i

ci
λi − µizi

θi
= (. . . )−

∑
i

zi
ciµi
θi

The solution now is obvious...
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THE FLUID SOLUTION

Renumber the classes in decreasing order of the index
ciµi
θi

Set
(z1, . . . , zI) = (λ1µ1 , . . . ,

λk−1

µk−1
, zk, 0, . . . , 0)

where
k = min{j :

∑j
1
λi
µi
> 1}, zk = 1−

∑k−1
1 zi

This yields
(q1, . . . , qI) = (0, . . . , 0, qk > 0,

λk+1

θk+1
, . . . λIθI )
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THE FULL INDEX

Substituting ci ← ci + γiθi gives

cµ

θ
→ (c+ γθ)µ

θ
= (

c

θ
+ γ)µ

Clearly, priority is given to customers with high waiting cost,
long patience, high abandonment cost, and high service rate.

We note that in [Ayesta, Jacko & Novak 2017], the same index
(with some additional cost terms) is derived using the Whittle
index for restless bandits.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 12 / 25



THE FULL INDEX

Substituting ci ← ci + γiθi gives

cµ

θ
→ (c+ γθ)µ

θ
= (

c

θ
+ γ)µ

Clearly, priority is given to customers with high waiting cost,
long patience, high abandonment cost, and high service rate.

We note that in [Ayesta, Jacko & Novak 2017], the same index
(with some additional cost terms) is derived using the Whittle
index for restless bandits.

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 12 / 25



Back to the Stochastic System:

The fluid solution suggests at least two different implementations in
the stochastic system:

Fixed server assignment: Apply a fraction ≈ z∗i of the servers to
queue i.
Advantages:

√
Easy to implement

√
General applicability

Fix priority rule: Assign servers to waiting customers with the
highest cµ

θ index. (Preemptive or nonpreemptive.)
Advantages:√

No server idleness√
Policy does not depend on (λi)
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ASYMPTOTIC OPTIMALITY

Denote by v∗ the optimal value of the fluid LP problem.

Recall that Jn,T (π) = 1
nT E

π
∫ T
0

∑I
i=1 ciQ

n
i (t)dt

Let π0 denote the cµ/θ index policy (preemptive or
non-preemptive).

We show first that

lim inf
T→∞

lim inf
n→∞

Jn,T (πn) ≥ v∗

for any sequence {πn} of policies (not necessary stationary).

We further show that for π0 the limits exist and equal v∗.
[Atar, Giat & Sh. 2010]

We repeat the above for the ergodic cost: Limits taken in the
opposite order.

[Atar, Giat & Sh. 2011]

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 14 / 25



ASYMPTOTIC OPTIMALITY

Denote by v∗ the optimal value of the fluid LP problem.

Recall that Jn,T (π) = 1
nT E

π
∫ T
0

∑I
i=1 ciQ

n
i (t)dt

Let π0 denote the cµ/θ index policy (preemptive or
non-preemptive).

We show first that

lim inf
T→∞

lim inf
n→∞

Jn,T (πn) ≥ v∗

for any sequence {πn} of policies (not necessary stationary).

We further show that for π0 the limits exist and equal v∗.
[Atar, Giat & Sh. 2010]

We repeat the above for the ergodic cost: Limits taken in the
opposite order.

[Atar, Giat & Sh. 2011]

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 14 / 25



ASYMPTOTIC OPTIMALITY

Denote by v∗ the optimal value of the fluid LP problem.

Recall that Jn,T (π) = 1
nT E

π
∫ T
0

∑I
i=1 ciQ

n
i (t)dt

Let π0 denote the cµ/θ index policy (preemptive or
non-preemptive).

We show first that

lim inf
T→∞

lim inf
n→∞

Jn,T (πn) ≥ v∗

for any sequence {πn} of policies (not necessary stationary).

We further show that for π0 the limits exist and equal v∗.
[Atar, Giat & Sh. 2010]

We repeat the above for the ergodic cost: Limits taken in the
opposite order.

[Atar, Giat & Sh. 2011]

Nahum Shimkin, EE Technion Server Scheduling with Anandonment December 4, 2018 14 / 25



The Controlled Process and General Policies

The processes involved (for given n - omitting the n superscript)

I Ai, Di, Ri: cumulative number of arrivals / service
completions / reneging on [0, t].

I Xi, Qi, Zi: Number of jobs in the system / queue
(unserved) / service at t; Xi = Qi + Zi.

Stochastic Primitives: (Ãi, D̃i, R̃i) ∼ Independent Poisson
processes, with rates nλi, µi, θi; and IC’s Xi(0).

Define

Di(t) = D̃i(

∫ t

0
Zi(s)ds), Ri(t) = R̃i(

∫ t

0
Qi(s)ds)

item Additional relations:

Xi(t) = Xi(0) + (Ai −Di −Ri)(t)

Qi ≥ 0, 0 ≤ Zi ≤ n
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Policies

A policy is now defined implicitly as any tuple
πn = (Dn

i , R
n
i , X

n
i , Q

n
i , Z

n
i )

that satisfies the above-mentioned relations.

The implied policies include history-dependent, non-stationry
policies – and in fact also non-causal policies.

Fluid scaling:

The time-dependent fluid model is obtained as the limit in
n→∞ of the scaled processes ( 1

nD
n
i ,

1
nR

N
i ....) (whenever the

limits exist).

When these processes converge to a constant, we obtain the
static model discussed above.
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Non-exponential Patience Distributions
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General Patience Distributions

Fluid models for (many-server) queues with abandonment and
generally-distributed patience become more complicated, as
they require measure-valued processes todescribe the
(remaining) patience of customers in the queue.

The fluid limit of a multiclass queueing system with
G/GI/n+GI queues under fixed priority policies was analyzed
in Atar, Kaspi & Sh. (2014), extending the approach of Kaspi &
Ramanan (2011), Kang & Ramanan (2012) to the multiclass
case.

We outline here some initial results in the fluid model that
pertains to the simpler G/M/n+GI case, along with nonlinear
holding costs.
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Elements of the Fluid Model

Fi is the patience distribution of class i, with hazard-rate
function hi.

Xi(t) = Qi(t) +Bi(t) is the number of class-i customers in the
system (# in queue + # in service).

Cost function:

JT (π) =
1

T

I∑
i=1

[∫ T

0
Ci (Qi(s)) ds+ γiRi(T )

]
.

where Ci(q) is a no-decreasing holding cost function, and Ri(T )
is the number of abandonmens by time T .
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Steady State Fluid Model

For a given non-idling scheduling policy π, suppose Qi(t)→ qi,
and Bi(t)→ bi (actually one implies the other).

Then 0 ≤ bi ≤ λi/µi,
∑I

i=1 bi = n, and

qi = λi

∫ F−1
i (1−biµi/λi)

0
F ci (s)ds

Therefore,

lim
T→∞

JT (π) =
I∑
i=1

Ji(bi)

where

Ji(bi) = Ci
(
λi

∫ F−1
i (1−biµi/λi)

0
F ci (s)ds

)
+ γi(λi − biµi).
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Fluid Optimization Problem

In terms of the steady state of the fluid model, we obtain the
optimization problem:

minimize
I∑
i=1

Ji(bi)

subject to
I∑
i=1

bi ≤ n,

0 ≤ bi ≤
λi
µi
, i = 1, . . . , I.

(1)

The decision variables bi’s can be intuitively understood as the
amount of service resources that are assigned to class i customers in
the long run.
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Fluid Optimization Problem: The concave Case

Suppose that the holding cost functions Ci is concave, and the
patience hazard rate functions hi are nondecreasing. Then the
optimization problem is concave.

In that case the optimal solution is at the extreme point of the
feasible region, which implies a fixed priority rule. In particular,
there exists a fixed priority rule π∗ such that each Bi(t)
converges to the optimal solution b∗i .

Hence, the average cost JT (π
∗) converges to the optimal steady

state solution as T →∞.
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The convex Case

Suppose that the holding cost functions Ci are convex, and the
patience hazard rate functions hi are nonincreasing. Then the
optimization problem is convex.

Assuming further strict convexity and an interior solution, the
KKT optimality conditions for this problem imply

Pi(bi) :=
C ′i
(
λi
∫ F−1

i (1−biµi/λi)
0 F ci (s)ds

)
µi

hi(F
−1
i (1− biµi/λi))

+ γiµi + αiµi − βiµi

= constant

along with
∑

i bi = n.
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The convex Case - Generalized cµ/θ rule.

This motivates us to consider the following dynamic priority
rule:

At time t, assign priority in decreasing order of P (Bi(t))

Under this policy, each Bi(t) converges to the optimal solution
b∗i .

Hence, the average cost JT (π
∗) converges to the optimal steady

state solution as T →∞.
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A General Priority Rule: The Target-Setting Policy

Let (b∗i ) be an optimal solution of the steady-state optimization
problem.

Consider the time-varying priority rule

At time t, assign priority in decreasing order of Pi(t)

where
Pi(t) = b∗i −Bi(t)

Then similar convergence properties hold, namely Bi(t)→ b∗,
and JT (π)→ J∗.
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