Scheduling for Multiclass Many-server Queues with Abandonment: the $c\mu/\theta$ Rule and its Generalizations

Nahum Shimkin

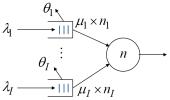
Technion - Israel Institute of Technology

YEQT 2018 - Young European Queueing Theorists XII December 3-4, Toulouse, France

- The first part is joint work with Chanit Giat and Rami Atar (Technion).
- The second part is joint work with Zhenghua Long, Hailun Zhang and Jiheng Zhang (HKUST)

< 47 ▶

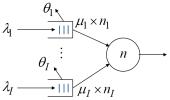
THE BASIC MODEL



Consider a queueing systems with:

- n identical servers
- Finite set $\mathcal{I} = \{1 \dots I\}$ of customer classes
- Poisson arrivals, with rates $\lambda_i, i \in \mathcal{I}$
- Exponential service times, with means μ_i
- Impatient customers: exponential patience time, with mean θ_i

THE BASIC MODEL



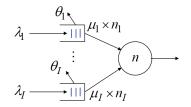
Consider a queueing systems with:

- n identical servers
- Finite set $\mathcal{I} = \{1 \dots I\}$ of customer classes
- Poisson arrivals, with rates λ_i , $i \in \mathcal{I}$
- Exponential service times, with means μ_i
- Impatient customers: exponential patience time, with mean θ_i

We focus here on the case of an overloaded system:

$$\sum_{i} \frac{\lambda_i}{\mu_i} > 1$$

COST PARAMETERS



• Waiting cost parameter c_i

Our cost function:

$$J(T) = \frac{1}{T} \mathbb{E} \int_0^T \sum_{i=1}^I c_i Q_i(t) dt$$

(for large T).

What about abandonment penalties?

э

< 17 ▶

What about abandonment penalties?

Consider the cost function

$$J(T) = \frac{1}{T} \mathbb{E} \int_0^T \sum_{i=1}^I (c_i Q_i(t) + \gamma_i dN_i^{aban}(t)) dt$$

э

What about abandonment penalties?

Consider the cost function

$$J(T) = \frac{1}{T} \mathbb{E} \int_0^T \sum_{i=1}^I (c_i Q_i(t) + \gamma_i dN_i^{aban}(t)) dt$$

Since patience is exponentially-distributed,

$$\mathbb{E}(dN_t^{aban}(t)) = \theta_i Q_i(t) \,,$$

and this cost reduces to the previous one with $c_i \leftarrow c_i + \gamma_i \theta_i$.

PRIORITY RULES

- For the single-server queue with no abandonment, the optimal scheduling policy is the celebrated cμ index rule [Cox & Smith 1951, etc.]
- For the same queue with convex delay costs, the generalized $c\mu$ rule is asymptotically optimal under the heavy-traffic diffusion regime [Van Mieghem 1995].

PRIORITY RULES

- For the single-server queue with no abandonment, the optimal scheduling policy is the celebrated cμ index rule [Cox & Smith 1951, etc.]
- For the same queue with convex delay costs, the generalized $c\mu$ rule is asymptotically optimal under the heavy-traffic diffusion regime [Van Mieghem 1995].
- We wish to find a simple scheduling policy, which is close to optimal under suitable conditions.

FLUID SCALING

- We consider the case of many servers, namely $n \to \infty$.
- Accordingly, we let $\lambda_i^n = n\lambda_i$.

 μ_i, θ_i and the cost parameters are not scaled.

3

▲ 伊 ▶ ▲ 三

FLUID SCALING

- We consider the case of many servers, namely $n \to \infty$.
- Accordingly, we let $\lambda_i^n = n\lambda_i$. μ_i, θ_i and the cost parameters are not scaled.

The scaled cost function:

$$J^{n}(T) = \frac{1}{nT} \mathbb{E} \int_{0}^{T} \sum_{i=1}^{I} c_{i} Q_{i}^{n}(t) dt \quad n, T \to \infty$$

- T

FLUID SCALING

- We consider the case of many servers, namely $n \to \infty$.
- Accordingly, we let $\lambda_i^n = n\lambda_i$. μ_i, θ_i and the cost parameters are not scaled.

The scaled cost function:

$$J^{n}(T) = \frac{1}{nT} \mathbb{E} \int_{0}^{T} \sum_{i=1}^{I} c_{i} Q_{i}^{n}(t) dt \quad n, T \to \infty$$

- Many-server fluid approximations of queueing systems with abandonments were studied, among others, by [Mandelbaym, Massey & Reiman 1998], [Whitt 2004] (M/M/n + M). [Whitt 2006] suggested a heuristic model for the G/GI/n + G queue.
- *Control* problems in the queueing regime were consdiered for example in [Bassamboo, Harrison & Zeevi 2007], who considered suboptimal routing and admission control policies that track the solution of the fluid model.

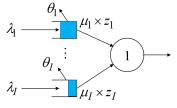
OUR PLAN

- Use a simplified fluid model to get some ideas for effective policies.
- Translate these policies to the original (stochastic) system.

< A IN

THE FLUID MODEL

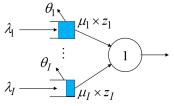
 Let us scale the arrival, departure and abandonment processes by ¹/_n, assume that they are stationary, and focus on their rates. We arrive heuristically at the following static fluid model:



where $\sum_i z_i \leq 1$.

THE FLUID MODEL

• Let us scale the arrival, departure and abandonment processes by $\frac{1}{n}$, assume that they are stationary, and focus on their rates. We arrive heuristically at the following static fluid model:



where $\sum_i z_i \leq 1$.

• Flow balance equations (with fixed queue lengths):

$$\lambda_i = z_i \mu_i + \theta_i q_i$$

if $\lambda_i \geq z_i \mu_i$, otherwise $q_i = 0$.

THE FLUID LP PROBLEM

• Our optiimization problem:

$$\min_{\{z_i\}} \sum_i c_i q_i$$

s.t. $\lambda_i = \mu_i z_i + \theta_i q_i; \ z_i \ge 0, \sum_i z_i \le 1; \ q_i \ge 0 \implies z_i \le \frac{\lambda_i}{\mu_i}$

イロト 不得 トイヨト イヨト 二日

THE FLUID LP PROBLEM

• Our optiimization problem:

$$\min_{\{z_i\}}\sum_i c_i q_i$$

s.t.
$$\lambda_i = \mu_i z_i + \theta_i q_i$$
; $z_i \ge 0$, $\sum_i z_i \le 1$; $q_i \ge 0 \implies z_i \le \frac{\lambda_i}{\mu_i}$

• Substituting for q_i :

$$\sum_{i} c_{i} q_{i} = \sum_{i} c_{i} \frac{\lambda_{i} - \mu_{i} z_{i}}{\theta_{i}} = (\dots) - \sum_{i} z_{i} \frac{c_{i} \mu_{i}}{\theta_{i}}$$

• The solution now is obvious...

December 4, 2018 10 / 25

THE FLUID SOLUTION

• Renumber the classes in *decreasing* order of the index $\frac{c_i \mu_i}{\theta_i}$

э

< (17) × <

THE FLUID SOLUTION

• Renumber the classes in decreasing order of the index $\frac{c_i \mu_i}{\theta_i}$

• Set

$$(z_1, \dots, z_I) = (\frac{\lambda_1}{\mu_1}, \dots, \frac{\lambda_{k-1}}{\mu_{k-1}}, z_k, 0, \dots, 0)$$

where
 $k = \min\{j : \sum_{1}^{j} \frac{\lambda_i}{\mu_i} > 1\}, z_k = 1 - \sum_{1}^{k-1} z_i$
This yields

This yields

$$(q_1, \dots, q_I) = (0, \dots, 0, q_k > 0, \frac{\lambda_{k+1}}{\theta_{k+1}}, \dots, \frac{\lambda_I}{\theta_I})$$

Nahum Shimkin, EE Technion

3

Image: A match a ma

THE FULL INDEX

• Substituting $c_i \leftarrow c_i + \gamma_i \theta_i$ gives

$$\frac{c\mu}{\theta} \rightarrow \frac{(c+\gamma\theta)\mu}{\theta} = (\frac{c}{\theta}+\gamma)\mu$$

• Clearly, priority is given to customers with high waiting cost, long patience, high abandonment cost, and high service rate.

THE FULL INDEX

• Substituting $c_i \leftarrow c_i + \gamma_i \theta_i$ gives

$$\frac{c\mu}{\theta} \rightarrow \frac{(c+\gamma\theta)\mu}{\theta} = (\frac{c}{\theta}+\gamma)\mu$$

- Clearly, priority is given to customers with high waiting cost, long patience, high abandonment cost, and high service rate.
- We note that in [Ayesta, Jacko & Novak 2017], the same index (with some additional cost terms) is derived using the Whittle index for restless bandits.

The fluid solution suggests at least two different implementations in the stochastic system:

The fluid solution suggests at least two different implementations in the stochastic system:

• Fixed server assignment: Apply a fraction $\approx z_i^*$ of the servers to queue *i*. Advantages: $\sqrt{}$ Easy to implement $\sqrt{}$ General applicability

The fluid solution suggests at least two different implementations in the stochastic system:

- Fixed server assignment: Apply a fraction $\approx z_i^*$ of the servers to queue *i*. Advantages: $\sqrt{}$ Easy to implement $\sqrt{}$ General applicability
- Fix priority rule: Assign servers to waiting customers with the highest $\frac{c\mu}{\theta}$ index. (Preemptive or nonpreemptive.)

The fluid solution suggests at least two different implementations in the stochastic system:

- Fixed server assignment: Apply a fraction $\approx z_i^*$ of the servers to queue *i*. Advantages: $\sqrt{}$ Easy to implement $\sqrt{}$ General applicability
- Fix priority rule: Assign servers to waiting customers with the highest ^{cμ}/_θ index. (Preemptive or nonpreemptive.)
 Advantages:
 - $\sqrt{}$ No server idleness
 - $\sqrt{}$ Policy does not depend on (λ_i)

ASYMPTOTIC OPTIMALITY

- Denote by v^* the optimal value of the fluid LP problem.
- Recall that $J^{n,T}(\pi) = \frac{1}{nT} \mathbb{E}^{\pi} \int_0^T \sum_{i=1}^I c_i Q_i^n(t) dt$
- Let π^0 denote the $c\mu/\theta$ index policy (preemptive or non-preemptive).

3

ASYMPTOTIC OPTIMALITY

- Denote by v^* the optimal value of the fluid LP problem.
- Recall that $J^{n,T}(\pi) = \frac{1}{nT} \mathbb{E}^{\pi} \int_0^T \sum_{i=1}^I c_i Q_i^n(t) dt$
- Let π^0 denote the $c\mu/\theta$ index policy (preemptive or non-preemptive).
- We show first that

$$\liminf_{T \to \infty} \liminf_{n \to \infty} J^{n,T}(\pi_n) \ge v^*$$

for any sequence $\{\pi_n\}$ of policies (not necessary stationary).

• We further show that for π^0 the limits exist and equal v^* . [Atar, Giat & Sh. 2010]

ASYMPTOTIC OPTIMALITY

- Denote by v^* the optimal value of the fluid LP problem.
- Recall that $J^{n,T}(\pi) = \frac{1}{nT} \mathbb{E}^{\pi} \int_0^T \sum_{i=1}^I c_i Q_i^n(t) dt$
- Let π^0 denote the $c\mu/\theta$ index policy (preemptive or non-preemptive).
- We show first that

$$\liminf_{T \to \infty} \liminf_{n \to \infty} J^{n,T}(\pi_n) \ge v^*$$

for any sequence $\{\pi_n\}$ of policies (not necessary stationary).

- We further show that for π^0 the limits exist and equal v^* . [Atar, Giat & Sh. 2010]
- We repeat the above for the ergodic cost: Limits taken in the opposite order.

[Atar, Giat & Sh. 2011]

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

The Controlled Process and General Policies

- The processes involved (for given *n* omitting the *n* superscript)
 - ► A_i, D_i, R_i: cumulative number of arrivals / service completions / reneging on [0, t].
 - ► X_i, Q_i, Z_i: Number of jobs in the system / queue (unserved) / service at t; X_i = Q_i + Z_i.

The Controlled Process and General Policies

- The processes involved (for given *n* omitting the *n* superscript)
 - ► A_i, D_i, R_i: cumulative number of arrivals / service completions / reneging on [0, t].
 - ► X_i, Q_i, Z_i: Number of jobs in the system / queue (unserved) / service at t; X_i = Q_i + Z_i.
- Stochastic Primitives: (*Ã_i*, *Ď_i*, *R̃_i*) ~ Independent Poisson processes, with rates nλ_i, μ_i, θ_i; and IC's X_i(0).
- Define

$$D_i(t) = \tilde{D}_i(\int_0^t Z_i(s)ds), \quad R_i(t) = \tilde{R}_i(\int_0^t Q_i(s)ds)$$

The Controlled Process and General Policies

- The processes involved (for given n omitting the n superscript)
 - ► A_i, D_i, R_i: cumulative number of arrivals / service completions / reneging on [0, t].
 - \blacktriangleright X_i, Q_i, Z_i: Number of jobs in the system / queue (unserved) / service at t; $X_i = Q_i + Z_i$.
- Stochastic Primitives: $(\tilde{A}_i, \tilde{D}_i, \tilde{R}_i) \sim$ Independent Poisson processes, with rates $n\lambda_i$, μ_i , θ_i ; and IC's $X_i(0)$.
- Define

$$D_i(t) = \tilde{D}_i(\int_0^t Z_i(s)ds), \quad R_i(t) = \tilde{R}_i(\int_0^t Q_i(s)ds)$$

em Additional relations:

ite

$$X_i(t) = X_i(0) + (A_i - D_i - R_i)(t)$$
$$Q_i \ge 0, \quad 0 \le Z_i \le n$$

Policies

• A policy is now defined implicitly as any tuple $\pi^n = (D^n_i, R^n_i, X^n_i, Q^n_i, Z^n_i)$

that satisfies the above-mentioned relations.

• The implied policies include history-dependent, non-stationry policies – and in fact also non-causal policies.

Policies

- A policy is now defined implicitly as any tuple $\pi^n = (D_i^n, R_i^n, X_i^n, Q_i^n, Z_i^n)$ that satisfies the above-mentioned relations.
- The implied policies include history-dependent, non-stationry policies and in fact also non-causal policies.

Fluid scaling:

- The time-dependent fluid model is obtained as the limit in $n \to \infty$ of the scaled processes $(\frac{1}{n}D_i^n, \frac{1}{n}R_i^N...)$ (whenever the limits exist).
- When these processes converge to a constant, we obtain the static model discussed above.

Non-exponential Patience Distributions

< 1 k

э

General Patience Distributions

- Fluid models for (many-server) queues with abandonment and generally-distributed patience become more complicated, as they require measure-valued processes todescribe the (remaining) patience of customers in the queue.
- The fluid limit of a multiclass queueing system with G/GI/n + GI queues under fixed priority policies was analyzed in Atar, Kaspi & Sh. (2014), extending the approach of Kaspi & Ramanan (2011), Kang & Ramanan (2012) to the multiclass case.

General Patience Distributions

- Fluid models for (many-server) queues with abandonment and generally-distributed patience become more complicated, as they require measure-valued processes todescribe the (remaining) patience of customers in the queue.
- The fluid limit of a multiclass queueing system with G/GI/n + GI queues under fixed priority policies was analyzed in Atar, Kaspi & Sh. (2014), extending the approach of Kaspi & Ramanan (2011), Kang & Ramanan (2012) to the multiclass case.
- We outline here some initial results in the fluid model that pertains to the simpler G/M/n + GI case, along with nonlinear holding costs.

・ 「「・ ・ 」 ・ ・ 」 ・ ・ 」

Elements of the Fluid Model

- F_i is the patience distribution of class i, with hazard-rate function h_i .
- $X_i(t) = Q_i(t) + B_i(t)$ is the number of class-*i* customers in the system (# in queue + # in service).

Elements of the Fluid Model

- F_i is the patience distribution of class i, with hazard-rate function h_i .
- X_i(t) = Q_i(t) + B_i(t) is the number of class-i customers in the system (# in queue + # in service).
- Cost function:

$$J_T(\pi) = \frac{1}{T} \sum_{i=1}^{I} \left[\int_0^T C_i(Q_i(s)) \, ds + \gamma_i R_i(T) \right].$$

where $C_i(q)$ is a no-decreasing holding cost function, and $R_i(T)$ is the number of abandonmens by time T.

Steady State Fluid Model

- For a given non-idling scheduling policy π , suppose $Q_i(t) \rightarrow q_i$, and $B_i(t) \rightarrow b_i$ (actually one implies the other).
- Then $0 \le b_i \le \lambda_i/\mu_i$, $\sum_{i=1}^I b_i = n$, and

$$q_i = \lambda_i \int_0^{F_i^{-1}(1-b_i\mu_i/\lambda_i)} F_i^c(s) ds$$

3

Steady State Fluid Model

- For a given non-idling scheduling policy π , suppose $Q_i(t) \rightarrow q_i$, and $B_i(t) \rightarrow b_i$ (actually one implies the other).
- Then $0 \leq b_i \leq \lambda_i/\mu_i$, $\sum_{i=1}^I b_i = n$, and

$$q_i = \lambda_i \int_0^{F_i^{-1}(1-b_i\mu_i/\lambda_i)} F_i^c(s) ds$$

• Therefore,

$$\lim_{T \to \infty} J_T(\pi) = \sum_{i=1}^I J_i(b_i)$$

where

$$J_i(b_i) = C_i \left(\lambda_i \int_0^{F_i^{-1}(1-b_i\mu_i/\lambda_i)} F_i^c(s)ds\right) + \gamma_i(\lambda_i - b_i\mu_i).$$

3

Fluid Optimization Problem

In terms of the steady state of the fluid model, we obtain the optimization problem:

minimize
$$\sum_{i=1}^{I} J_i(b_i)$$

subject to
$$\sum_{i=1}^{I} b_i \le n,$$
$$0 \le b_i \le \frac{\lambda_i}{\mu_i}, \ i = 1, \dots, I.$$
$$(1)$$

The decision variables b_i 's can be intuitively understood as the amount of service resources that are assigned to class i customers in the long run.

Fluid Optimization Problem: The concave Case

• Suppose that the holding cost functions C_i is *concave*, and the patience hazard rate functions h_i are *nondecreasing*. Then the optimization problem is concave.

Fluid Optimization Problem: The concave Case

- Suppose that the holding cost functions C_i is *concave*, and the patience hazard rate functions h_i are *nondecreasing*. Then the optimization problem is concave.
- In that case the optimal solution is at the extreme point of the feasible region, which implies a fixed priority rule. In particular, there exists a fixed priority rule π^* such that each $B_i(t)$ converges to the optimal solution b_i^* .
- Hence, the average cost $J_T(\pi^*)$ converges to the optimal steady state solution as $T \to \infty$.

The convex Case

- Suppose that the holding cost functions C_i are *convex*, and the patience hazard rate functions h_i are *nonincreasing*. Then the optimization problem is convex.
- Assuming further strict convexity and an interior solution, the KKT optimality conditions for this problem imply

$$P_i(b_i) := \frac{C_i'(\lambda_i \int_0^{F_i^{-1}(1-b_i\mu_i/\lambda_i)} F_i^c(s)ds)\mu_i}{h_i(F_i^{-1}(1-b_i\mu_i/\lambda_i))} + \gamma_i\mu_i + \alpha_i\mu_i - \beta_i\mu_i$$
$$= constant$$

along with $\sum_i b_i = n$.

The convex Case - Generalized $c\mu/\theta$ rule.

• This motivates us to consider the following *dynamic* priority rule:

At time t, assign priority in decreasing order of $P(B_i(t))$

The convex Case - Generalized $c\mu/\theta$ rule.

• This motivates us to consider the following *dynamic* priority rule:

At time t, assign priority in decreasing order of $P(B_i(t))$

- Under this policy, each $B_i(t)$ converges to the optimal solution b_i^* .
- Hence, the average cost $J_T(\pi^*)$ converges to the optimal steady state solution as $T \to \infty$.

A General Priority Rule: The Target-Setting Policy

- Let (b_i^*) be an optimal solution of the steady-state optimization problem.
- Consider the time-varying priority rule

At time t, assign priority in decreasing order of ${\cal P}_i(t)$ where

$$P_i(t) = b_i^* - B_i(t)$$

A General Priority Rule: The Target-Setting Policy

- Let (b_i^*) be an optimal solution of the steady-state optimization problem.
- Consider the time-varying priority rule

At time t, assign priority in decreasing order of ${\cal P}_i(t)$ where

$$P_i(t) = b_i^* - B_i(t)$$

• Then similar convergence properties hold, namely $B_i(t) \to b*$, and $J_T(\pi) \to J^*$.

- 3