Queue-based activation protocols in random-access networks

Matteo Sfragara
University of Leiden

Joint work with
S. Borst (Eindhoven), F. den Hollander (Leiden), F. R. Nardi (Florence)

YEQT Toulouse
3-4 December 2018

Index

(1) The model

2 Complete bipartite graphs
(3) Arbitrary bipartite graphs

4 Future works

Index

(1) The model
(2) Complete bipartite graphs
(3) Arbitrary bipartite graphs
(4) Future works

Random-access network

- Servers form a network.
- Packets arrive at each server, heavy load.
- Servers interfere with each other when "too close"
- Only active servers can process packets.

The interference graph

－Network \rightarrow graph $G(N, B)$ ．
－Servers \rightarrow set of nodes N ．
－＂Closeness＂\rightarrow set of bonds B ．

Network model

－bipartite graph $G(U \cup V, B)$
－red nodes in U ，blue nodes in V
－state of node i at time t is
$X_{i}(t)=\left\{\begin{array}{l}0, \text { inactive } \\ 1, \text { active }\end{array}\right.$
－nodes connected by bonds
 cannot be active at the same time

Transition time

Two stable configurations:
$\mathrm{u}=$ all nodes in U active, all nodes in V inactive;
$v=$ all nodes in U inactive, all nodes in V active.

Transition time

Define the transition time τ_{v} to be the first time the system hits the configuration v, i.e.,

$$
\tau_{\vee}=\min \left\{t \geq 0: X_{i}(t)=0 \forall i \in U, X_{i}(t)=1 \forall i \in V\right\}
$$

We are interested in the distribution of τ_{v} given that the initial configuration is u.

The transition from u to v represents a "global switch in the network".

Two type of models

- ON \rightarrow OFF: Poisson deactivation clock ticking at rate 1.
- OFF \rightarrow ON: Poisson activation clock ticking at a time-varying rate; the attempt is succesful when no neighbours are active at time t^{-}.

Different models

- External: activation rates depend on a deterministic function $f(t)$

$$
r_{i}^{\text {ext }}(t)= \begin{cases}g_{U}(f(t)), & i \in U, \\ g_{V}(f(t)), & i \in V\end{cases}
$$

- Internal: activation rates depend on the actual queue length $Q_{i}(t)$

$$
r_{i}^{\text {int }}(t)= \begin{cases}g_{U}\left(Q_{i}(t)\right), & i \in U \\ g_{V}\left(Q_{i}(t)\right), & i \in V\end{cases}
$$

Acitivation rates

The choice g_{U}, g_{V} determines the transition time of the network.
Assumptions on the activation rates:
(i) let $g_{U}, g_{V} \in \mathcal{G}$, with

$$
\begin{gathered}
\mathcal{G}=\left\{g: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}: g\right. \text { non-decreasing and globally Lipschitz, } \\
\left.g\left(\mathbb{R}_{\leq 0}\right)=0, \lim _{x \rightarrow \infty} g(x)=\infty\right\}
\end{gathered}
$$

(ii) we want nodes in V more aggressive than nodes in U, i.e.,

$$
\lim _{x \rightarrow \infty} \frac{g_{V}(x)}{g_{U}(x)}=\infty
$$

We focus on polynomial functions

$$
g_{u}(x)=G x^{\beta}, \quad x \in[0, \infty)
$$

with $G, \beta \in(0, \infty)$.

The queue length

Queue length

The length of the queue at node i at time t is

$$
Q_{i}(t)=0 \vee\left[Q_{i}(0)+Q_{i}^{+}(t)-Q_{i}^{-}(t)\right] .
$$

- Input process $Q_{i}^{+}(t)=\sum_{j=0}^{N_{i}(t)} Y_{i j}$: compound Poisson process with mean ρ.
- Output process $Q_{i}^{-}(t)=c \int_{0}^{t} X_{i}(u) d u$: a server processes its packets at rate c.
- We want $c>\rho$.

Intensity parameter $r \rightarrow \infty$. Given $\gamma_{U} \geq \gamma_{V}>0$, the initial queue lengths are assumed to be

$$
Q_{i}(0)= \begin{cases}\gamma_{U} r, & i \in U, \\ \gamma_{V} r, & i \in V .\end{cases}
$$

Index

（1）The model
（2）Complete bipartite graphs
（3）Arbitrary bipartite graphs

4 Future works

Complete bipartite graphs

Define the pre-transition time $\bar{\tau}_{v}$ to be the first time a node in V activates.

Initial configuration u.

Pre-transition.

Transition, v.

Ideas

- Borst, den Hollander, Nardi, Taati (2017): results on the transition time $\tau_{v}^{\text {ext }}$ for external models.
- The internal model is expected to be more efficient, since it looks at the actual queue lengths.
- We compare the internal model with the external model via the mean queue length: activation rates with $f_{i}(t)=\mathbb{E}\left[Q_{i}(t)\right]$.
- We construct two auxiliary external models (lower and upper) by perturbing the mean queue length, hence the activation rates of the external model. We know how to deal with them.
- Results are obtained by coupling the three models and sandwiching $\tau_{v}^{\text {int }}$ between $\tau_{v}^{\text {low }}$ and $\tau_{v}^{\text {upp }}$.

Mean transition time

Recall that $g_{U}(x)=G x^{\beta}, x \in[0, \infty)$.

- Subcritical regime: $\beta \in\left(0, \frac{1}{|U|-1}\right)$.
- Critical regime: $\beta=\frac{1}{|U|-1}$.
- Supercritical regime: $\beta \in\left(\frac{1}{|U|-1}, \infty\right)$.

Theorem 1: Mean transition time in the external model

$$
\mathbb{E}\left[\tau_{\vee}^{\mathrm{ext}}\right]=F r^{1 \vee \beta(|U|-1)}[1+o(1)], \quad r \rightarrow \infty,
$$

with

$$
F= \begin{cases}\frac{\gamma_{U}^{\beta(U \mid-1)}}{|U| G-(U \mid-1)}, & \text { if } \beta \in\left(0, \frac{1}{|U|-1}\right), \\ \frac{\gamma U}{|U| G-(\mid U-1)+\left(c-\rho_{U}\right)}, & \text { if } \beta=\frac{1}{|U|-1} \\ \frac{\gamma U}{c-\rho_{U}}, & \text { if } \beta=\left(\frac{1}{|U|-1}, \infty\right) .\end{cases}
$$

Law of the transition time

Theorem 2：Law in the external model

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\frac{\tau_{v}^{\text {ext }}}{\mathbb{E}\left[\tau_{v}^{\text {ext }}\right]}>x\right)=\mathcal{P}(x), \quad x \in[0, \infty)
$$

Trichotomy for $x \mapsto \mathcal{P}(x)$ ．
－Subcritical：exponential decay， $\mathcal{P}_{1}(x)=e^{-x}$ ．
－Critical：polynomial decay， $\mathcal{P}_{2}(x)=(1-C x)^{\frac{1-C}{C}}$ ．
－Supercritical： $\mathcal{P}_{3}(x)$ ，cut－off．

Internal model

For any perturbation $\delta>0$ small enough, there exists a coupling such that

$$
\lim _{r \rightarrow \infty} \hat{\mathbb{P}}\left(\tau_{v}^{\text {low }} \leq \tau_{v}^{\text {int }} \leq \tau_{v}^{\text {upp }}\right)=1
$$

where $\hat{\mathbb{P}}$ is the joint law induced by the coupling, with all three models starting from the configuration u.

Theorem 3: Mean transition time and law in the internal model

$$
\mathbb{E}\left[\tau_{v}^{\mathrm{int}}\right]=F r^{1 \vee \beta(|U|-1)}[1+o(1)], \quad r \rightarrow \infty
$$

and

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\frac{\tau_{v}^{\text {int }}}{\mathbb{E}\left[\tau_{v}^{\text {int }}\right]}>x\right)=\mathcal{P}(x), \quad x \in[0, \infty)
$$

Large deviations

Take any small $\delta>0$.

- With high probabiliy the input process $Q^{+}(\cdot)$ follows a path close to its mean $\mathbb{E}\left[Q^{+}(t)\right]=\rho t$,

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\rho t-\delta r \leq Q^{+}(t) \leq \rho t+\delta r \forall t \geq 0\right)=1
$$

- With high probability the output process $Q^{-}(\cdot)$ follows a path close to the deterministic path $c t$,

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(c t-\delta r \leq Q^{-}(t) \leq c t \forall t \in\left[0, T_{U}\right]\right)=1
$$

We use large deviations theorems such as Mogulskii's Theorem and Cramér's Theorem.

Bounds and auxiliary models

We can control the queue length process via a tube around its path：we have lower and upper bounds for $Q(t)$ ．

Two auxiliary external models where the activation rates depend on the above bounds：
－Lower external model：U less aggressive，V more aggressive．
－Upper external model：U more aggressive，V less aggressive．

Coupling results and sandwich

- Coupling the internal with the lower external model, we get

$$
\lim _{r \rightarrow \infty} \hat{\mathbb{P}}\left(\tau_{v}^{\text {low }} \leq \tau_{v}^{\text {int }}\right)=1
$$

- In a similar way, coupling with the upper external model, we get

$$
\lim _{r \rightarrow \infty} \hat{\mathbb{P}}\left(\bar{\tau}_{v}^{\mathrm{int}} \leq \tau_{v}^{\mathrm{upp}}\right)=1
$$

- Negligible gap between pre-transition and transition time:

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\tau_{v}^{\mathrm{int}}-\bar{\tau}_{v}^{\mathrm{int}}=o\left(\frac{1}{g_{v}(r)}\right)\right)=1 .
$$

\Rightarrow Sandwich. For $\delta>0$ small enough, there exists a coupling such that

$$
\lim _{r \rightarrow \infty} \hat{\mathbb{P}}\left(\tau_{v}^{\text {low }} \leq \tau_{v}^{\text {int }} \leq \tau_{v}^{\text {upp }}\right)=1
$$

Index

(1) The model

(2) Complete bipartite graphs
(3) Arbitrary bipartite graphs

4 Future works

Aribitrary bipartite graphs

Network extension：more general bipartite graphs，like a cyclic ladder， an hypercube，an even torus．．．

The pre－transition time does not play a key role anymore：the time between the first activation of a node in V and the transition time can be very large．
\Longrightarrow How does the system behave after the first activation？

Ideas

- Nodes in V activates one by one: path according to first activations. When a node in V is active, its neighbors are blocked forever.
- We define a greedy algorithm that describes the most likely paths the system follows.
- The study of the transition time of the system can be reduced to the study of the transition time along a fixed path generated by the algorithm. The transition time will be given by the sum of nucleation times of a sequence of complete bipartite subgraphs.
- By analyzing the queue length behavior after each activation, we are able to understand how the pre-factor of each nucleation time changes.
- We are able to give explicit asymptotics for the mean transition time when $r \rightarrow \infty$ and to describe its law.

The algorithm

Bipartite graph $G=((U, V), E)$ with $|U|=6$ and $|V|=4$.

Generated path: $v_{2}, v_{1}, v_{4}, v_{3}$.

Iteration procedure

We start with $G=G_{1}=\left(\left(U_{1}, V_{1}\right), E_{1}\right)$ and iterate the following procedure until V_{k+1} is empty.

1. Consider the graph G_{k}.
2. Look at the nodes in V_{k} and at the minimum degree \bar{d}_{k} in G_{k}.
3. Pick a node uniformly at random from the ones with minimum degree. Denote the chosen node by a_{k}.
4. Eliminate the node a_{k}, all its neighbors in U_{k} and all their edges.

Denote the new bipartite graph by G_{k+1}.
To each iteration $k=1, \ldots, N$ is associated a mean nucleation time, given by

$$
\mathbb{E}\left[\mathcal{T}_{a_{k}}^{Q^{k-1}}\right]=F_{c}\left(Q^{k-1}, \bar{d}_{k}\right) r^{1 \vee \beta\left(\bar{d}_{k}-1\right)}[1+o(1)], \quad r \rightarrow \infty
$$

Most likely pahts

$\mathcal{A} \rightarrow$ set of all possible paths generated by the algorithm. $a^{*}=\left(a_{1}^{*}, \ldots, a_{N}^{*}\right) \rightarrow$ path that the system follows.

Theorem 4: Most likely paths

(i) With high probability when $r \rightarrow \infty$ the system follows one of the paths generated by the algorithm, i.e.,

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(a^{*} \in \mathcal{A}\right)=1
$$

(ii) Given the path $a=\left(a_{1}, \ldots, a_{N}\right) \in \mathcal{A}$ and the event $A=\left\{a^{*}=a\right\}$,

$$
\mathbb{E}\left[\mathcal{T}_{G}^{Q^{0}} \mid A\right]=\sum_{k=1}^{N} \mathbb{E}\left[\mathcal{T}_{a_{k}}^{Q^{k-1}}\right], \quad r \rightarrow \infty
$$

Motivation

- Let $\mathcal{E}=\{$ The system follows the algorithm $\}$.
- The mean transition time of the graph G can be written as

$$
\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}}\right]=\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mathbb{1}_{\mathcal{E}}\right]+\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mathbb{1}_{\mathcal{E}^{c}}\right]
$$

where

$$
\begin{equation*}
\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mathbb{1}_{\mathcal{E}}\right]=\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mid \mathcal{E}^{C}\right] \mathbb{P}_{r}\left(\mathcal{E}^{C}\right) \tag{1}
\end{equation*}
$$

- Since $\mathbb{P}\left(\mathcal{E}^{C}\right) \rightarrow 0$ as $r \rightarrow \infty$, we are interested in the term $\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mathbb{1}_{\mathcal{E}}\right]$ and we can split it as

$$
\begin{equation*}
\mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mathbb{1}_{\mathcal{E}}\right]=\sum_{a \in \mathcal{A}} \mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mathbb{1}_{A}\right]=\sum_{a \in \mathcal{A}} \mathbb{E}_{r}\left[\mathcal{T}_{G}^{Q^{0}} \mid A\right] \mathbb{P}(A) \tag{2}
\end{equation*}
$$

Note that we can easily recover the probability $\mathbb{P}(A)$ of each path from the algorithm.

Mean transition time

Recall that $g_{U}(x)=G x^{\beta}$.
Order: $d^{*}=\max _{k} \bar{d}_{k}$.
Pre-factor: $k_{1}, k_{2}=$ number of nucleations such that $\bar{d}_{k}=d^{*}$.

Theorem 5: Mean transition time

$$
\mathbb{E}\left[\mathcal{T}_{G}^{Q^{0}}\right]= \begin{cases}\frac{k_{1} \gamma_{U}^{\beta\left(d^{*}-1\right)}}{d^{*} G-\left(d^{*}-1\right)} r^{\beta\left(d^{*}-1\right)}[1+o(1)], & \text { if } \beta \in\left(0, \frac{1}{d^{*}-1}\right), \\ \sum_{k: \bar{d}_{k}=d^{*}} \frac{\gamma_{U}^{\left(k_{k}\right)}}{d^{*} G^{-\left(d^{*}-1\right)}+\left(c-\rho_{U}\right)} r[1+o(1)], & \text { if } \beta=\frac{1}{d^{*}-1}, \\ \frac{\gamma U}{c-\rho_{U}} r[1+o(1)], & \text { if } \beta \in\left(\frac{1}{d^{*}-1}, \infty\right) .\end{cases}
$$

Recall that we are conditioning the system on the event A. In the subcritical and supercritical regimes, the result is actually independent from which path we condition on.

Law of the transition time

Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}$ be probability distributions as in Theorem 2. The law of the transition time is given by a convolution of these laws.

Theorem 6: Law of the transition time

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \mathbb{P}\left(\frac{\mathcal{T}_{G}^{Q^{0}}}{\mathbb{E}\left[\mathcal{T}_{G}^{Q^{0}}\right]}>x\right)=\mathcal{P}^{c}(x), \quad x \in[0, \infty) \tag{3}
\end{equation*}
$$

with

$$
\mathcal{P}^{c}(x)= \begin{cases}(\underbrace{\left(\mathcal{P}_{1} * \cdots * \mathcal{P}_{1}\right.}_{k_{1} \text { times }})(x), & \text { if } \beta \in\left(0, \frac{1}{d^{*}-1}\right), \tag{4}\\ \underbrace{\left(\mathcal{P}_{2} \cdots * \mathcal{P}_{2}\right.}_{k_{2} \text { times }})(x), & \text { if } \beta=\frac{1}{d^{*}-1}, \\ \mathcal{P}_{3}(x), & \text { if } \beta \in\left(\frac{1}{d^{*}-1}, \infty\right)\end{cases}
$$

Updated queue lengths

- If $\beta \in\left(0, \frac{1}{d^{*}-1}\right)$, at any step k, the queue length at a node in U is

$$
Q_{U}^{k}=\gamma_{U} r[1+o(1)], \quad r \rightarrow \infty .
$$

- If $\beta=\frac{1}{d^{*}-1}$, at any step k, the queue length at a node in U after activating h_{k} critical nodes in V is

$$
Q_{U}^{k}=\gamma_{U}^{\left(h_{k}\right)} r[1+o(1)], \quad r \rightarrow \infty
$$

with

$$
\gamma_{U}^{\left(h_{k}\right)}=\left(\gamma_{U}-\left(c-\rho_{U}\right) \sum_{i=1}^{h_{k}} z_{i}\right)
$$

where $\left(Z_{i}\right)_{i=1}^{N}$ is a family of random variables.

- If $\beta \in\left(\frac{1}{d^{*}-1}, \infty\right)$, at any step k, the queue length at a node in U after activating the first supercritical node in V is

$$
Q_{U}^{k}=o(1), \quad r \rightarrow \infty
$$

Index

(1) The model

(2) Complete bipartite graphs
(3) Arbitrary bipartite graphs

4 Future works

Future works

- Protocol extension: activation rates depend also on the queue lengths of neighbouring nodes.

- Network extension: focus on different types of interference graph, not necessary bipartite.
- Activation rates: consider more general activation rates g_{U}, g_{V} or relax the aggressiveness assumption.

Thank you for your attention.

