Future works

Queue-based activation protocols in random-access networks

Matteo Sfragara University of Leiden

Joint work with S. Borst (Eindhoven), F. den Hollander (Leiden), F. R. Nardi (Florence)

YEQT Toulouse 3-4 December 2018

(日) (同) (三) (三)

Index

The model

- 2 Complete bipartite graphs
- 3 Arbitrary bipartite graphs

4 Future works

Index

2 Complete bipartite graphs

- 3 Arbitrary bipartite graphs
- 4 Future works

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Future works

Random-access network

- Servers form a network.
- Packets arrive at each server, heavy load.
- Servers interfere with each other when "too close"
- Only active servers can process packets.

Future works

The interference graph

- Network \rightarrow graph G(N, B).
- Servers \rightarrow set of nodes *N*.
- "Closeness" \rightarrow set of bonds *B*.

Network model

- bipartite graph $G(U \cup V, B)$
- red nodes in U, blue nodes in V
- state of node *i* at time *t* is $X_i(t) = \begin{cases} 0, \text{ inactive} \\ 1, \text{ active} \end{cases}$
- nodes connected by bonds cannot be active at the same time

イロト イポト イヨト イヨト

Transition time

Two stable configurations:

- u = all nodes in U active, all nodes in V inactive;
- v = all nodes in U inactive, all nodes in V active.

Transition time

Define the *transition time* τ_v to be the first time the system hits the configuration v, i.e.,

$$\tau_{\mathsf{v}} = \min\left\{t \ge 0 \colon X_i(t) = 0 \ \forall \ i \in U, \ X_i(t) = 1 \ \forall \ i \in V\right\}.$$

We are interested in the distribution of τ_v given that the initial configuration is u.

The transition from u to v represents a "global switch in the network".

Two type of models

- $\bullet~\text{ON} \rightarrow \text{OFF:}$ Poisson deactivation clock ticking at rate 1.
- OFF → ON: Poisson activation clock ticking at a time-varying rate; the attempt is succesful when no neighbours are active at time t⁻.

Different models

• **External**: activation rates depend on a deterministic function f(t)

$$r_i^{ ext{ext}}(t) = \left\{ egin{array}{c} g_U(f(t)), & i \in U, \ g_V(f(t)), & i \in V. \end{array}
ight.$$

• Internal: activation rates depend on the actual queue length $Q_i(t)$

$$r_i^{\text{int}}(t) = \begin{cases} g_U(Q_i(t)), & i \in U, \\ g_V(Q_i(t)), & i \in V. \end{cases}$$

・ロト・日本・日本・日本・日本・日本

Acitivation rates

The choice g_U, g_V determines the transition time of the network. **Assumptions** on the activation rates:

(i) let $g_U, g_V \in \mathcal{G}$, with

 $\mathcal{G} = \Big\{g \colon \mathbb{R} o \mathbb{R}_{\geq 0} \colon g \text{ non-decreasing and globally Lipschitz}, \Big\}$

$$g(\mathbb{R}_{\leq 0}) = 0, \lim_{x \to \infty} g(x) = \infty \Big\};$$

(ii) we want nodes in V more aggressive than nodes in U, i.e.,

$$\lim_{x\to\infty}\frac{g_V(x)}{g_U(x)}=\infty.$$

We focus on polynomial functions

$$g_U(x) = G x^{\beta}, \qquad x \in [0,\infty),$$

with $G, \beta \in (0, \infty)$.

Matteo Sfragara University of Leiden

・ロト ・母 ト ・ヨ ト ・ ヨ ・ つへの

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

The queue length

Queue length

The length of the queue at node i at time t is

$$Q_i(t) = 0 \vee [Q_i(0) + Q_i^+(t) - Q_i^-(t)].$$

- Input process $Q_i^+(t) = \sum_{j=0}^{N_i(t)} Y_{ij}$: compound Poisson process with mean ρ .
- Output process Q[−]_i(t) = c ∫^t₀ X_i(u)du: a server processes its packets at rate c.
- We want $c > \rho$.

Intensity parameter $r \to \infty$. Given $\gamma_U \ge \gamma_V > 0$, the initial queue lengths are assumed to be

$$Q_i(0) = \begin{cases} \gamma_U r, & i \in U, \\ \gamma_V r, & i \in V. \end{cases}$$

Index

2 Complete bipartite graphs

3 Arbitrary bipartite graphs

4 Future works

- * 中 * * 通 * * 差 * * 差 * * 差 * * の < @

Complete bipartite graphs

Define the **pre-transition time** $\bar{\tau}_v$ to be the first time a node in V activates.

	Complete bipartite graphs	
Ideas		

- Borst, den Hollander, Nardi, Taati (2017): results on the transition time τ_v^{ext} for external models.
- The internal model is expected to be more efficient, since it looks at the actual queue lengths.
- We compare the internal model with the external model via the mean queue length: activation rates with $f_i(t) = \mathbb{E}[Q_i(t)]$.
- We construct two auxiliary external models (lower and upper) by perturbing the mean queue length, hence the activation rates of the external model. We know how to deal with them.
- Results are obtained by **coupling** the three models and sandwiching τ_v^{int} between τ_v^{low} and τ_v^{upp} .

Mean transition time

Recall that $g_U(x) = Gx^{\beta}$, $x \in [0, \infty)$.

- Subcritical regime: $\beta \in (0, \frac{1}{|U|-1})$.
- Critical regime: $\beta = \frac{1}{|U|-1}$.
- Supercritical regime: $\beta \in \left(\frac{1}{|U|-1},\infty\right)$.

Theorem 1: Mean transition time in the external model

$$\mathbb{E}[\tau_v^{\mathrm{ext}}] = \mathit{Fr}^{1 \vee \beta(|\mathcal{U}|-1)} [1 + o(1)], \qquad r \to \infty,$$

with

$$F = \begin{cases} \frac{\gamma_U^{\beta(|U|-1)}}{|U| G^{-(|U|-1)}}, & \text{if } \beta \in (0, \frac{1}{|U|-1}), \\ \frac{\gamma_U}{|U| G^{-(|U|-1)} + (c - \rho_U)}, & \text{if } \beta = \frac{1}{|U|-1} \\ \frac{\gamma_U}{c - \rho_U}, & \text{if } \beta = (\frac{1}{|U|-1}, \infty) \end{cases}$$

<ロ> <昂> < 臣> < 臣> < 臣> 三

Law of the transition time

Theorem 2: Law in the external model

$$\lim_{r\to\infty} \mathbb{P}\left(\frac{\tau_v^{\text{ext}}}{\mathbb{E}[\tau_v^{\text{ext}}]} > x\right) = \mathcal{P}(x), \qquad x \in [0,\infty).$$

Trichotomy for $x \mapsto \mathcal{P}(x)$.

- Subcritical: exponential decay, $\mathcal{P}_1(x) = e^{-x}$.
- Critical: polynomial decay, $\mathcal{P}_2(x) = (1 Cx)^{\frac{1-C}{C}}$.
- Supercritical: $\mathcal{P}_3(x)$, cut-off.

Matteo Sfragara University of Leiden

・ロト ・母 ト ・ヨ ト ・ ヨ ・ つへの

Internal model

For any perturbation $\delta > 0$ small enough, there exists a ${\rm coupling}$ such that

$$\lim_{r \to \infty} \hat{\mathbb{P}} \big(\tau_{v}^{\text{low}} \leq \tau_{v}^{\text{int}} \leq \tau_{v}^{\text{upp}} \big) = 1,$$

where $\hat{\mathbb{P}}$ is the joint law induced by the coupling, with all three models starting from the configuration *u*.

Theorem 3: Mean transition time and law in the internal model

$$\mathbb{E}[\tau_v^{\mathrm{int}}] = \operatorname{Fr}^{1 \vee \beta(|U|-1)}[1 + o(1)], \qquad r \to \infty,$$

and

$$\lim_{r\to\infty} \mathbb{P}\left(\frac{\tau_v^{\text{int}}}{\mathbb{E}[\tau_v^{\text{int}}]} > x\right) = \mathcal{P}(x), \qquad x\in [0,\infty).$$

イロン イ団と イヨン ・

1

Large deviations

Take any small $\delta > 0$.

• With high probabiliy the input process $Q^+(\cdot)$ follows a path close to its mean $\mathbb{E}[Q^+(t)] = \rho t$,

$$\lim_{r\to\infty}\mathbb{P}\big(\rho t-\delta r\leq Q^+(t)\leq \rho t+\delta r \;\;\forall t\geq 0\big)=1.$$

 With high probability the output process Q[−](·) follows a path close to the deterministic path ct,

$$\lim_{r\to\infty}\mathbb{P}\big(ct-\delta r\leq Q^-(t)\leq ct \ \forall t\in[0,T_U]\big)=1.$$

We use **large deviations** theorems such as Mogulskii's Theorem and Cramér's Theorem.

イロト イヨト イヨト イヨト

Bounds and auxiliary models

We can control the queue length process via a **tube** around its path: we have lower and upper bounds for Q(t).

Two auxiliary external models where the activation rates depend on the above bounds:

- Lower external model: U less aggressive, V more aggressive.
- Upper external model: U more aggressive, V less aggressive.

Coupling results and sandwich

• Coupling the internal with the lower external model, we get

$$\lim_{r\to\infty} \hat{\mathbb{P}}(\tau_v^{\mathrm{low}} \leq \tau_v^{\mathrm{int}}) = 1.$$

• In a similar way, coupling with the upper external model, we get

$$\lim_{r\to\infty} \hat{\mathbb{P}}(\bar{\tau}_{v}^{\mathrm{int}} \leq \tau_{v}^{\mathrm{upp}}) = 1.$$

• Negligible gap between pre-transition and transition time:

$$\lim_{r\to\infty}\mathbb{P}\bigg(\tau_v^{\rm int}-\bar\tau_v^{\rm int}=o\bigg(\frac{1}{g_V(r)}\bigg)\bigg)=1.$$

 $\Rightarrow~$ Sandwich. For $\delta>0$ small enough, there exists a coupling such that

$$\lim_{r \to \infty} \hat{\mathbb{P}} \big(\tau_{v}^{\text{low}} \leq \tau_{v}^{\text{int}} \leq \tau_{v}^{\text{upp}} \big) = 1.$$

イロト イ理ト イヨト イヨト

3

Index

2 Complete bipartite graphs

Arbitrary bipartite graphs

4 Future works

▲□▶▲@▶▲≧▶▲≧▶ ≧ めんの

《曰》 《圖》 《臣》 《臣》

Aribitrary bipartite graphs

Network extension: more general bipartite graphs, like a cyclic ladder, an hypercube, an even torus...

The pre-transition time does not play a key role anymore: the time between the first activation of a node in V and the transition time can be very large.

 \implies How does the system behave after the first activation?

	Arbitrary bipartite graphs	
Ideas		

- Nodes in V activates one by one: path according to first activations. When a node in V is active, its neighbors are blocked forever.
- We define a **greedy algorithm** that describes the most likely paths the system follows.
- The study of the transition time of the system can be reduced to the study of the transition time along a fixed path generated by the algorithm. The transition time will be given by the sum of nucleation times of a **sequence of complete bipartite subgraphs**.
- By analyzing the queue length behavior after each activation, we are able to understand how the pre-factor of each nucleation time changes.
- We are able to give explicit asymptotics for the mean transition time when $r \to \infty$ and to describe its law.

イロン イ団と イヨン ・

3

The algorithm

Bipartite graph G = ((U, V), E) with |U| = 6 and |V| = 4.

Generated path: v_2 , v_1 , v_4 , v_3 .

- * ロ > * 母 > * き > * き > - き - の < で

Iteration procedure

We start with $G = G_1 = ((U_1, V_1), E_1)$ and iterate the following **procedure** until V_{k+1} is empty.

- 1. Consider the graph G_k .
- 2. Look at the nodes in V_k and at the minimum degree \bar{d}_k in G_k .
- 3. Pick a node uniformly at random from the ones with minimum degree. Denote the chosen node by a_k .
- 4. Eliminate the node a_k , all its neighbors in U_k and all their edges. Denote the new bipartite graph by G_{k+1} .

To each iteration k = 1, ..., N is associated a **mean nucleation time**, given by

$$\mathbb{E}[\mathcal{T}^{Q^{k-1}}_{a_k}] = F_c(Q^{k-1}, \bar{d}_k) r^{1 \vee \beta(\bar{d}_k-1)} \left[1 + o(1)\right], \qquad r \to \infty.$$

Most likely pahts

 $\mathcal{A}\to$ set of all possible paths generated by the algorithm. $a^*=(a_1^*,\ldots,a_N^*)\to$ path that the system follows.

Theorem 4: Most likely paths

(i) With high probability when $r \to \infty$ the system follows one of the paths generated by the algorithm, i.e.,

$$\lim_{r\to\infty}\mathbb{P}(a^*\in\mathcal{A})=1.$$

(ii) Given the path $a=(a_1,\ldots,a_N)\in \mathcal{A}$ and the event $A=\{a^*=a\}$,

$$\mathbb{E}[\mathcal{T}_{G}^{Q^{0}}|A] = \sum_{k=1}^{N} \mathbb{E}[\mathcal{T}_{a_{k}}^{Q^{k-1}}], \qquad r \to \infty.$$

▲日 ▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 日 ▼ ● ● ●

	Arbitrary bipartite graphs	
Motivation		

- Let $\mathcal{E} = \{$ The system follows the algorithm $\}$.
- The mean transition time of the graph G can be written as

$$\mathbb{E}_r[\mathcal{T}_G^{Q^0}] = \mathbb{E}_r[\mathcal{T}_G^{Q^0}\mathbb{1}_{\mathcal{E}}] + \mathbb{E}_r[\mathcal{T}_G^{Q^0}\mathbb{1}_{\mathcal{E}^c}],$$

where

$$\mathbb{E}_{r}[\mathcal{T}_{G}^{Q^{0}}\mathbb{1}_{\mathcal{E}^{C}}] = \mathbb{E}_{r}[\mathcal{T}_{G}^{Q^{0}}|\mathcal{E}^{C}]\mathbb{P}_{r}(\mathcal{E}^{C}).$$
(1)

• Since $\mathbb{P}(\mathcal{E}^{\mathcal{C}}) \to 0$ as $r \to \infty$, we are interested in the term $\mathbb{E}_r[\mathcal{T}_G^{Q^0} \mathbb{1}_{\mathcal{E}}]$ and we can split it as

$$\mathbb{E}_{r}[\mathcal{T}_{G}^{Q^{0}}\mathbb{1}_{\mathcal{E}}] = \sum_{a \in \mathcal{A}} \mathbb{E}_{r}[\mathcal{T}_{G}^{Q^{0}}\mathbb{1}_{A}] = \sum_{a \in \mathcal{A}} \mathbb{E}_{r}[\mathcal{T}_{G}^{Q^{0}}|A]\mathbb{P}(A).$$
(2)

Note that we can easily recover the probability $\mathbb{P}(A)$ of each path from the algorithm.

Mean transition time

Recall that $g_U(x) = Gx^{\beta}$. **Order**: $d^* = \max_k \bar{d}_k$. **Pre-factor**: k_1, k_2 = number of nucleations such that $\bar{d}_k = d^*$.

Theorem 5: Mean transition time

$$\mathbb{E}[\mathcal{T}_{G}^{Q^{0}}] = \begin{cases} \frac{k_{1}\gamma_{U}^{\beta(d^{*}-1)}}{d^{*}G^{-(d^{*}-1)}}r^{\beta(d^{*}-1)}\left[1+o(1)\right], & \text{if } \beta \in \left(0,\frac{1}{d^{*}-1}\right), \\ \sum_{k: \ \bar{d}_{k}=d^{*}} \frac{\gamma_{U}^{(h_{k})}}{d^{*}G^{-(d^{*}-1)}+(c-\rho_{U})}r\left[1+o(1)\right], & \text{if } \beta = \frac{1}{d^{*}-1}, \\ \frac{\gamma_{U}}{c-\rho_{U}}r\left[1+o(1)\right], & \text{if } \beta \in \left(\frac{1}{d^{*}-1},\infty\right). \end{cases}$$

Recall that we are conditioning the system on the event A. In the subcritical and supercritical regimes, the result is actually **independent** from which path we condition on.

Law of the transition time

Let $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ be probability distributions as in Theorem 2. The law of the transition time is given by a **convolution** of these laws.

Theorem 6: Law of the transition time

$$\lim_{r \to \infty} \mathbb{P}\left(\frac{\mathcal{T}_{G}^{Q^{0}}}{\mathbb{E}[\mathcal{T}_{G}^{Q^{0}}]} > x\right) = \mathcal{P}^{c}(x), \qquad x \in [0, \infty),$$
(3)

with

$$\mathcal{P}^{c}(x) = \begin{cases} \underbrace{(\mathcal{P}_{1} \ast \cdots \ast \mathcal{P}_{1})(x)}_{k_{1} \text{ times}}, & \text{if } \beta \in (0, \frac{1}{d^{*}-1}), \\ \underbrace{(\mathcal{P}_{2} \ast \cdots \ast \mathcal{P}_{2})}_{k_{2} \text{ times}}(x), & \text{if } \beta = \frac{1}{d^{*}-1}, \\ \mathcal{P}_{3}(x), & \text{if } \beta \in (\frac{1}{d^{*}-1}, \infty). \end{cases}$$
(4)

Updated queue lengths

• If $\beta \in (0, \frac{1}{d^*-1})$, at any step k, the queue length at a node in U is

$$Q_U^k = \gamma_U r \, [1 + o(1)], \qquad r o \infty.$$

If β = 1/(d^{*}-1), at any step k, the queue length at a node in U after activating h_k critical nodes in V is

$$Q_U^k = \gamma_U^{(h_k)} r [1 + o(1)], \qquad r \to \infty,$$

with

$$\gamma_U^{(h_k)} = \left(\gamma_U - (c - \rho_U) \sum_{i=1}^{h_k} Z_i\right),\,$$

where $(Z_i)_{i=1}^N$ is a family of random variables.

If β ∈ (¹/_{d*-1},∞), at any step k, the queue length at a node in U after activating the first supercritical node in V is

$$Q_U^k = o(1), \qquad r o \infty.$$

Index

The model

- 2 Complete bipartite graphs
- 3 Arbitrary bipartite graphs

4 Future works

- * ロ * * @ * * 注 * 注 * うへの

• **Protocol extension**: activation rates depend also on the queue lengths of neighbouring nodes.

《曰》 《圖》 《臣》 《臣》

- **Network extension**: focus on different types of interference graph, not necessary bipartite.
- Activation rates: consider more general activation rates g_U, g_V or relax the aggressiveness assumption.

æ.

Thank you for your attention.