Strategic bidding in a discrete accumulating priority queue

Binyamin Oz

School of Business Administration
The Hebrew University of Jerusalem

Joint with Raneetha Abeywickrama, Moshe Haviv, and Ilze Ziedins

YEQT 2018
Toulouse, December 2018

Accumulating priority queue

- Customer accumulate priority at a constant rate while in the system
- One with the greatest (accumulated) priority is the next to enter service

- FCFS is a special case where all have the same rate
- Expected waiting times can be calculated recursively for the multiclass (discrete) case (Kleinrock 76')
- LSTs derived in (Stanford, Taylor, and Ziedins 13')

Strategic bidding

- $M / G / 1$ queue
- Arrival rate λ
- Service first and second moments \bar{x} and $\overline{x^{2}}$
- Utilization $\rho=\lambda \bar{x}$
- Steady state remaining service time $W_{0}=\lambda \overline{x^{2}} / 2$
- Queueing time under FCFS $\frac{W_{0}}{1-\rho}$
- Unobservable queue
- Customers decide which AP rate to purchase out of a menu
- Cost of rate b is $C_{p} b$
- Homogeneous linear waiting costs of C_{w} per unit time
- One's waiting time also depends on the decisions made by others
- \Longrightarrow non-cooperative game

Strategic bidding - equilibrium analysis

- A pure strategy is one of the menu's AP rate
- A mixed strategy is a distribution over the menu's AP rates
- A symmetric equilibrium strategy is such that if it is being used by everyone else, it is also your best response
- How should you react when more bid for higher priority?
- you will be more likely to be overtaken \Longrightarrow bid higher
- you will overtake less customers \Longrightarrow bid lower
- A priory unclear if to follow-the-crowd (FTC) or to avoid-the-crowd (ATC)

The continuous menu case Haviv and Ravner 16'

- Customers can choose any priority $b \geq 0$
- The continuous version of Kleinrock's formula is developed
- Waiting time is shown to be strictly convex as a function of the individual rate for any given mixed strategy of the others
- A single pure best response strategy
- Implies that all equilibria are pure
- Direct analysis shows that the unique equilibrium is

$$
b_{e}=\frac{\rho W_{0}}{1-\rho} \frac{C_{w}}{C_{p}}
$$

- Practically FCFS and all customers are worse off...
- How about the revenue? $C_{p} b_{e}$ is not a function of C_{p}

The continuous menu case - an alternative approach
Abeywickrama et al 18 '

- Everyone chooses rate b
- Look at the previous arrival
- This is what happens if you choose b as well
- Nothing happens if you choose $b+\Delta, \Delta>0$
- Unless you arrive earlier...

The continuous menu case - an alternative approach Abeywickrama et al 18 '

- You will overtake if

$$
Q b<(Q-A)(b+\Delta)
$$

- Alternatively, if

$$
A<Q \frac{\Delta}{b+\Delta}
$$

- Happens with prob.

$$
\lambda \mathbb{E}(Q) \frac{\Delta}{b+\Delta}+o(\Delta)=\lambda \frac{W_{0}}{1-\rho} \frac{\Delta}{b+\Delta}+o(\Delta)
$$

The continuous menu case - an alternative approach

Abeywickrama et al 18'

- If it happens you overtake and save $\bar{x} C_{w}$
- But you had to pay extra ΔC_{p} anyways
- \Longrightarrow you should increase whenever

$$
\left[\lambda \frac{W_{0}}{1-\rho} \frac{\Delta}{b+\Delta}+o(\Delta)\right] \bar{x} C_{w}>C_{p} \Delta
$$

- Divide by Δ, take the limit $\Delta \rightarrow 0$, and get

$$
b<\frac{\rho W_{0}}{1-\rho} \frac{C_{w}}{C_{p}}=b_{e}
$$

- Similar analysis for $\Delta<0$ shows that you should decrease whenever

$$
b>b_{e}
$$

- Means that the only equilibrium is

$$
b=b_{e}
$$

The discrete menu case Abeywickrama et al 18^{\prime}

- Customers can only choose from a discrete menu, say, $\{0,1,2, \ldots\}$
- What will be the equilibrium now?
- $\left\lfloor b_{e}\right\rfloor$?
- $\left\lceil b_{e}\right\rceil$?
- Both?
- A mixture of both?

Best response analysis

- $W(j, P)$ is the expected waiting of a customer who bids j while the others use the mixed strategy $P=\left(p_{0}, p_{1}, \ldots\right)$
- The total cost in that case is

$$
G(j, P)=C_{w} W(j, P)+C_{p} j
$$

- As said, $W(j, P)$ is strictly convex, so

Equilibrium analysis

- Means that the best response set contains at most two consecutive pure strategies
- \Longrightarrow Two possible types of equilibria:
- Pure
- Mixed between two consecutive integers

Pure equilibria

- Straightforward calculation shows that

$$
W(i-1, i)-W(i, i)=\frac{W_{0}}{1-\rho} \frac{\rho}{i-\rho}
$$

and

$$
W(i, i)-W(i+1, i)=\frac{W_{0}}{1-\rho} \frac{\rho}{i+1}
$$

- Means that i is an equilibrium iff

$$
\frac{\rho W_{0}}{1-\rho} \frac{1}{i-\rho} \geq C_{p} / C_{w} \geq \frac{\rho W_{0}}{1-\rho} \frac{1}{i+1}
$$

- Satisfied by $i_{1}^{e}=\left\lfloor b_{e}\right\rfloor$ and $i_{2}^{e}=\left\lfloor b_{e}+\rho\right\rfloor$
- If $i_{1}^{e}=i_{2}^{e}$ we have a unique pure equilibrium
- Otherwise we have two consecutive equilibria

Revenue

- Equals

$$
C_{p}\left\lfloor\frac{\rho W_{0}}{1-\rho} \frac{C_{w}}{C_{p}}\right\rfloor
$$

- Locally insensitive to C_{w}
- Locally increasing with C_{p}
- However...

Mixed equilibrium

- $(i+x), 0 \leq x \leq 1$, a real number denoting the strategy that mixes i and $i+1$ w.p. $1-x$ and x
- $i+x$ is an equilibrium if both i and $i+1$ are best response against it
- That is, if

$$
W(i, i+x)-W(i+1, i+x)=\frac{W_{0}}{1-\rho} \frac{\rho}{i+1-x \rho}=C_{p} / C_{w}
$$

- Possible only if $i_{1}^{e} \neq i_{2}^{e}$
- In that case it equals $i_{1}^{e}+x_{e}$ where

$$
x^{e}=\frac{i_{2}^{e}-b_{e}}{\rho}
$$

Mixed equilibrium

- Work conservation law implies that

$$
\left(1-x^{e}\right) W\left(i_{1}^{e}, i_{1}^{e}+x^{e}\right)+x^{e} W\left(i_{1}^{e}+1, i_{1}^{e}+x^{e}\right)=\frac{W_{0}}{1-\rho}
$$

- Calculations show that

$$
W\left(i_{1}^{e}, i_{1}^{e}+x^{e}\right)=\frac{i_{1}^{e}+1}{\rho} \frac{C_{p}}{C_{w}}
$$

and

$$
W\left(i_{1}^{e}+1, i_{1}^{e}+x^{e}\right)=\left(\frac{i_{1}^{e}+1}{\rho}-1\right) \frac{C_{p}}{C_{w}}
$$

- A seeming paradox: both are (locally) decreasing in ρ and C_{w} / C_{p}
- x^{e} decreases with C_{w} / C_{p} and $\rho \ldots$... Also counterintuitive

Stability

- P is an evolutionarily stable strategy (ESS) if for any other strategy \tilde{P} either
- $G(P, P)<G(\tilde{P}, P)$ or
- $G(P, P)=G(\tilde{P}, P)$ and $G(P, \tilde{P})<G(\tilde{P}, \tilde{P})$
- By definition, a unique equilibrium strategy is also an ESS
- When all three equilibria exist
- The pure are ESS
- The mixed is not (take $\tilde{P}=i_{1}^{e}$)
- A typical result in games with two pure equilibria and a third that mixes between the two

Best response behavior

- $\mathcal{B R}(i)$ the best-response strategy against the pure strategy i

Theorem

- $\mathcal{B R}(i)$ is unimodal in i
- That is, we have FTC behavior for $0 \leq i<i^{*}$ and ATC behavior for $i \geq i^{*}$, where $i^{*}=\max \left\{\arg \max _{i} \mathcal{B R}(i)\right\}$.
- The equilibrium strategies belong to the FTC part, i.e., $i_{1}^{e} \leq i_{2}^{e} \leq i^{*}$

Possible best response functions

Unique equilibrium in the increasing part

Possible best response functions

Unique equilibrium in the plateau

Possible best response functions

Two equilibria

THANK YOU

